Skip to main content
Log in

Effect of reactant concentration on the physicochemical properties of nanosized titania synthesized by microwave-assisted continuous flow method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanosized Titania was prepared through a microwave assisted continuous flow method. Initially, the samples were characterized by XRD, TEM, BET, FTIR, UV–Visible and photoluminescence (PL) spectroscopy. Then the effect of titanium-n-butaoxide (TBO, Ti4+ precursor) concentration on the physicochemical of Titania was investigated. X-ray diffraction spectra confirmed the formation of phase pure anatase phase of TiO2 with particle size of 5.87 nm. TEM images showed a slight transformation in the particle size but no substantial alteration in the particle morphology was observed. The optical bandgap studies revealed a red shift for TiO2 in this work. PL spectroscopy indicated a decrease in the surface defects. The size of the particles showed an enhancement to 8.31 nm from 5.87 nm while surface area measurements revealed a reduction to 191.65 from 289.17 m2g−1 on increasing the TBO concentration from 37 to 150 mmol. We perceive that TiO2 synthesised in this study may be a potential source for sensing and have optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.S. Allen et al., Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings. Polym. Degrad. Stab. 78(3), 467–478 (2002)

    Article  Google Scholar 

  2. Gao, G., Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press, London 2004)

    Google Scholar 

  3. S.D. Sharma et al., Photodegradation of dye pollutant under UV light by nano-catalyst doped titania thin films. Appl. Catal. B 84(1), 233–240 (2008)

    Article  Google Scholar 

  4. H. Xu, X. Wang, L. Zhang, Selective preparation of nanorods and micro-octahedrons of Fe 2 O 3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technol. 185(2), 176–180 (2008)

    Article  Google Scholar 

  5. J. Nowotny, M. Radecka, M. Rekas, Semiconducting properties of undoped TiO 2. J. Phys. Chem. Solids 58(6), 927–937 (1997)

    Article  Google Scholar 

  6. Y. Liu et al., Using resonance energy transfer to improve exciton harvesting in organic–inorganic hybrid photovoltaic cells. Adv. Mater. 17(24), 2960–2964 (2005)

    Article  Google Scholar 

  7. P. Ravirajan et al., Efficient charge collection in hybrid polymer/TiO2 solar cells using poly (ethylenedioxythiophene)/polystyrene sulphonate as hole collector. Appl. Phys. Lett. 86(14), 143101 (2005)

    Article  Google Scholar 

  8. J.Y. Kim et al., New Architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18(5), 572–576 (2006)

    Article  Google Scholar 

  9. W. Ren et al., Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO 2. Appl. Catal. B 69(3), 138–144 (2007)

    Article  Google Scholar 

  10. J. Wang et al., Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. J. Phys. Chem. B 105(40), 9692–9698 (2001)

    Article  Google Scholar 

  11. M.G. Walter et al., Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010)

    Article  Google Scholar 

  12. M.-H. Seo et al., Gas sensing characteristics and porosity control of nanostructured films composed of TiO 2 nanotubes. Sens. Actuators B 137(2), 513–520 (2009)

    Article  Google Scholar 

  13. S. Rani et al., Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12(12), 2780–2800 (2010)

    Article  Google Scholar 

  14. M. Hussain et al., Synthesis, characterization, and photocatalytic application of novel TiO 2 nanoparticles. Chem. Eng. J. 157(1), 45–51 (2010)

    Article  Google Scholar 

  15. M. Tahir, N.S. Amin, Photocatalytic CO 2 reduction and kinetic study over In/TiO 2 nanoparticles supported microchannel monolith photoreactor. Appl. Catal., A 467, 483–496 (2013)

    Article  Google Scholar 

  16. S. Valencia, J.M. Marín, G. Restrepo, Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater. Sc. J. 4(1), 9–14 (2010)

    Article  Google Scholar 

  17. S. Mohapatra et al., A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246(2), 362–369 (2007)

    Article  Google Scholar 

  18. M.S. Lee et al., Synthesis of TiO 2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity. Catal. Today 101(3), 283–290 (2005)

    Article  Google Scholar 

  19. F.K. Butt, A.S. Bandarenka, Microwave-assisted synthesis of functional electrode materials for energy applications. J. Solid State Electrochem., 1–14 (2016)

  20. Kremsner, J., A. Stadler, and C.O. Kappe, The Scale-Up of Microwave-Assisted Organic Synthesis, in Microwave Methods in Organic Synthesis, by M. Larhed, K. Olofssonq (eds) (Springer, Berlin Heidelberg, 2006), p. 233–278.

    Chapter  Google Scholar 

  21. H.M. Kingston, L.B. Jassie, Introduction to Microwave Sample Preparation: Theory and Practice.(American Chemical Society, Washington, DC, 1988)

    Google Scholar 

  22. M. Akram et al., Continuous microwave flow synthesis (CMFS) of nanosized titania: structural, optical and photocatalytic properties. Mater. Lett. 158, 95–98 (2015)

    Article  Google Scholar 

  23. A. Aminian et al., Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram. Int. 37(4), 1219–1229 (2011)

    Article  Google Scholar 

  24. T. Holland, S. Redfern, Unit cell refinement from powder diffraction data; the use of regression diagnostics. Mineral. Mag. 61(1), 65–77 (1997)

    Article  Google Scholar 

  25. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1), 33–177 (2004)

    Article  Google Scholar 

  26. V.G. Pol, Y. Langzam, A. Zaban, Application of microwave superheating for the synthesis of TiO2 rods. Langmuir 23(22), 11211–11216 (2007)

    Article  Google Scholar 

  27. H. Cheng et al., Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7(4), 663–671 (1995)

    Article  Google Scholar 

  28. Z. Wang et al., Photodegradation of rhodamine B under visible light by bimetal codoped TiO 2 nanocrystals. J. Hazard. Mater. 164(2), 615–620 (2009)

    Article  Google Scholar 

  29. Y.-S. Ko, M.-H. Kim, Y.-U. Kwon, Method to increase the surface area of titania films and its effects on the performance of dye-sensitized solar cells. Bull. Korean Chem. Soc. 29(2), 463–466 (2008)

    Article  Google Scholar 

  30. J. Yu et al., Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J. Mol. Catal. A 258(1), 104–112 (2006)

    Article  Google Scholar 

  31. A.M. Peiró et al., Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions. Chem. Mater. 13(8), 2567–2573 (2001)

    Article  Google Scholar 

  32. T. Furusawa et al., The microwave effect on the properties of silica-coated TiO 2 fine particles prepared using sol–gel method. Mater. Res. Bull. 43(4), 946–957 (2008)

    Article  Google Scholar 

  33. M.J. Mayo, D.C. Hague, D.J. Chen, Processing nanocrystalline ceramics for applications in superplasticity. Mater. Sci. Eng A 166(1–2), 145–159 (1993)

    Article  Google Scholar 

  34. A.Z. Alshemary et al., Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J. Alloys Compd. 645, 478–486 (2015)

    Article  Google Scholar 

  35. M. Iwamoto et al., Diffuse reflectance infrared and photoluminescence spectra of surface vanadyl groups. Direct evidence for change of bond strength and electronic structure of metal-oxygen bond upon supporting oxide. J. Am. Chem. Soc. 105(11), 3719–3720 (1983)

    Article  Google Scholar 

  36. J. Liqiang et al., Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90(12), 1773–1787 (2006)

    Article  Google Scholar 

  37. M. Memesa et al., Morphology and photoluminescence study of titania nanoparticles. Colloid. Polym. Sci. 289(8), 943–953 (2011)

    Article  Google Scholar 

  38. L.-Q. Jing et al., Relationships between photoluminescence performance and photocatalytic activity of ZnO and TiO2 nanoparticles. Chem. J. Chin. Univ. 26(1), 111–115 (2005)

    Google Scholar 

  39. G. Liu et al., Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem. 20(5), 831–843 (2010)

    Article  Google Scholar 

  40. G. Li et al., Effect of calcination temperature on the morphology and surface properties of TiO 2 nanotube arrays. Appl. Surf. Sci. 255(16), 7323–7328 (2009)

    Article  Google Scholar 

  41. P. Praus et al., CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide. J Colloid Interface Sci. 360(2), 574–579 (2011)

    Article  Google Scholar 

  42. S. Dai et al., Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res. Lett. 5(11), 1829–1835 (2010)

    Article  Google Scholar 

  43. B. Liu et al., Doping high-surface-area mesoporous TiO 2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7(8), 2592–2597 (2014)

    Article  Google Scholar 

  44. R. Long, N.J. English, Synergistic effects on band gap-narrowing in titania by codoping from first-principles calculations. Chem. Mater. 22(5), 1616–1623 (2010)

    Article  Google Scholar 

  45. F. Yi-Si, Y. Ri-Sheng, Z. Li-De, Preparation and optical properties of SnO2/SiO2 nanocomposite. Chin. Phys. Lett. 21(7), 1374 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaqat Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M., Taha, A., Butt, F.K. et al. Effect of reactant concentration on the physicochemical properties of nanosized titania synthesized by microwave-assisted continuous flow method. J Mater Sci: Mater Electron 28, 10449–10456 (2017). https://doi.org/10.1007/s10854-017-6817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6817-6

Keywords

Navigation