Skip to main content
Log in

Facile synthesis of tungsten trioxide 3D architectures by a simple chemical solution route and photodegradation of Rhodamine B: structural, thermal, optical and impedance studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile chemical precipitation method for slab and flower like WO3 microstructure having three-dimensional (3D) architecture is reported. The as-prepared WO3 powder specimens were characterized by X-ray diffraction (XRD) combined with Rietveld refinements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and UV–vis spectroscopy. SEM and XRD results revealed that the hierarchical WO3 microstructures with uniform flower-like morphology are congregated by number of interleaving nanosheets which have thickness of 150–180 nm and are crystallized in a single monoclinic WO3 phase. Thermo-gravimetric analysis shows a major weight loss of 8% due to evaporation of adsorbed water. The impedance spectroscopy of compact WO3 pellets showed that all samples were semiconducting with a minute difference in electrical properties. The photo-catalytic activity of the as-prepared WO3 samples was evaluated by the degradation of Rhodamine B (RhB) under ultra-violet light irradiation. The results showed that 3D hierarchical architectures exhibits high photo-catalytic efficiency compared with the slab like structure due to their porous hierarchical structures. The optical band gap energy of slab like structure is found to be lowered compared to flower-like WO3 structures. These tunable optical and transport features allow the development of new materials for potential applications as photo-catalysts, transparent conducting electrodes, electrochromic and sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.C. Rao, J. Non-Oxide Glass 5, 1–8 (2013)

    Google Scholar 

  2. Y. Du, M. Gu, T. Varga, C. Wang, M.E. Bowden, ACS Appl. Mater. Interfaces 6, 14253–142560 (2016)

    Article  Google Scholar 

  3. O. Lavi, G.L. Frey, A. Siegmann, Electrochem. Commun. 10, 1210–1213 (2008)

    Article  Google Scholar 

  4. C.G. Granqvist, E. Avendaño, A. Azens, Thin Solid Films 442, 201–212 (2003)

    Article  Google Scholar 

  5. G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro R, R. Tenne, J. Solid State Chem. 162, 300–314 (2001)

    Article  Google Scholar 

  6. T.J. Richardson, J.L. Slack, R.D. Armitage, R. Kostecki, B. Farangis, M.D. Rubin, Appl. Phys. Lett. 78, 3047–3056 (2001)

    Article  Google Scholar 

  7. A. Tocchetto, A. Glisenti, Langmuir 16, 6173–6182 (2000)

    Article  Google Scholar 

  8. S. Pokhrel, C.E. Simion, V.S. Teodorescu, N. Barsan, U. Weimar, Adv. Funct. Mater. 19, 1767–1774 (2009)

    Article  Google Scholar 

  9. A. Ghicov, S.P. Albu, J.M. Macak, P. Schmuki, Small 4, 1063–1069 (2008)

    Article  Google Scholar 

  10. L. Song, S. Zhang, X. Wu, Z. Wang, Q. Wei, Powder Technol. 235, 712–718 (2013)

    Article  Google Scholar 

  11. J. Chen, X. Gui, Z. Wang, Z. Li, R. Xiang, K. Wang, Appl. Mater. Interfaces 4, 81–87 (2012)

    Article  Google Scholar 

  12. W.S. Wang, L. Zhen, C.Y. Xu, L. Yang, W.Z. Shao, Cryst. Growth Des. 8, 1734–1740 (2008)

    Article  Google Scholar 

  13. C.M. Chang, M.H. Hon, I.C. Leu, RSC Adv. 2, 2469–2473 (2012)

    Article  Google Scholar 

  14. D. Chen, J. Xu, Z. Xie, G. Shen, ACS Appl. Mater. Interfaces 3, 2112–2119 (2011)

    Article  Google Scholar 

  15. J. Li, H. Fan, X. Jia, J. Phys. Chem. C 114, 14684–14691 (2010)

    Article  Google Scholar 

  16. H. Hu, L. Yu, X. Gao, Z. Lin, X.W. Lou, Energy Environ. Sci. 8, 1480–1483 (2015)

    Article  Google Scholar 

  17. X.Y. Yu, H. Hu, Y. Wang, H. Chen, X.W.D. Lou, Angew. Chem. 54, 7395–7403(2015)

    Article  Google Scholar 

  18. N. Van Hieu, V. Van Quang, N.D. Hoa, D. Kim, Curr. Appl. Phys. 11, 657–661 (2011)

    Article  Google Scholar 

  19. Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma, J. Phys. Chem. C 114, 2049–2055 (2010)

    Article  Google Scholar 

  20. H. Rietveld, J. Appl. Cryst. 2, 65–71 (1969)

    Article  Google Scholar 

  21. H.F. Pang, X. Xiang, Z.J. Li, Y.Q. Fu, X.T. Zu, Phys. Status Solidi 209, 537–544 (2009)

    Article  Google Scholar 

  22. D. Li, D. Chandra, K. Saito, T. Yui, M. Yagi, Nanoscale Res. Lett. 9, 542–545 (2014)

    Article  Google Scholar 

  23. H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, J. Am. Chem. Soc. 129, 8406–78407 (2007)

    Article  Google Scholar 

  24. M. Ahmad, M.A. Rafiq, Z. Imran, K. Rasool, R.N. Shahid, Y. Javed, J. Appl. Phys. 114, 043710–043715 (2014)

    Article  Google Scholar 

  25. R.J. Tauc, A. Grigorovici, Phys. Status Solidi 15, 627–637 (1969)

    Article  Google Scholar 

  26. M.M. Momeni, Y. Ghayeb, M. Menati, J. Mater. Sci. 27, 9454–9460 (2016)

    Google Scholar 

  27. M. Chitkara, K. Singh, I.S. Sandhu, H.S. Bhatti, J. Mater. Sci. 24, 3921–3924 (2013)

    Google Scholar 

  28. D. Liu, J. Huang, L. Cao, X. Tao, B. Zhang, J. Mater. Sci. 27, 2473–2480 (2016)

    Google Scholar 

Download references

Authors contribution

The manuscript was written and reviewed by AAK and ARK. The impedance segment of the manuscript and Zview analysis was carried out by MNK and MI in CDL Lab at PINSTECH. Synthesis of samples was done by MQK and their photocatalytic study was carried out by RM. AYA and YI has carried out the TGA measurement of the prepared sample. Figures were prepared by AAK and YI has carried out the proof reading of the manuscript. All authors were involved in analyzing the results and critical discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayaz Arif Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Khan, M.Q., Iqbal, M. et al. Facile synthesis of tungsten trioxide 3D architectures by a simple chemical solution route and photodegradation of Rhodamine B: structural, thermal, optical and impedance studies. J Mater Sci: Mater Electron 28, 10357–10364 (2017). https://doi.org/10.1007/s10854-017-6805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6805-x

Keywords

Navigation