Skip to main content
Log in

Structure and microwave dielectric properties of (Ba1 − xSm2x/3)((Co0.7Mg0.3)1/3Nb2/3)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The sintering behavior, microstructure and microwave dielectric properties of (Ba1 − x Sm2x/3)((Co0.7Mg0.3)1/3Nb2/3)O3 (0.01 ≤ x ≤ 0.04) ceramics has been investigated. A small amount of Sm-substitution facilitates the densification of Ba (Co0.7Mg0.3)1/3Nb2/3O3 ceramics. All ceramic samples are well-sintered and the relative densities are beyond 97%. Small homogeneous grains and low porosity have been observed by scanning electron microscopy photograghs. Single-phase solid solutions are achieved in all compositions and no secondary phase was detected by X-ray diffraction patterns. The appropriate amount of Sm-substitution on A-site leads to the improved degree of 1:2 B-site cation ordering, while the ordered degree decreases gradually as the Sm content increases, which is related to the A-site deficiency caused by the inequitable substitution. The degree of 1:2 ordering structure is responsible for the microwave dielectric properties of the Sm-substituted samples, especially Q × f values. A good combination of microwave dielectric properties have been obtained for (Ba0.98Sm0.04/3)((Co0.7Mg0.3)1/3Nb2/3)O3 sintered at 1420 °C: ε r = 32.9, Q × f = 50309 GHz and τ f = 6 ppm/oC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Wersing, Curr. Opin. Solid St. M, 1(5), 715 (1996)

  2. R.J. Cava, J. Mater. Chem 11(1), 54 (2001)

    Article  Google Scholar 

  3. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, J. Am. Ceram. Soc. 66, 421–423 (1983)

    Article  Google Scholar 

  4. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)

    Google Scholar 

  5. P.K. Davies, A. Borisevich, M. Thirumal, J. Eur. Ceram. Soc 23, 2461 (2003)

    Article  Google Scholar 

  6. I. Qazi, I.M. Reaney, W.E. Lee, J. Eur. Ceram. Soc 21, 2813 (2001)

    Article  Google Scholar 

  7. T.L. Sun, L. Li, M.M. Mao, X.M. Chen, Int. J. Appl. Ceram. Tec 10, E210 (2013)

    Article  Google Scholar 

  8. S.L. Zhang, P.P. Ma, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 10, 3185 (2015)

    Article  Google Scholar 

  9. A. G. Belous, O. V. Ovchar, O. V. Kramarenko, J. Bezjak, B. Jancar, D. Suvorov, G. Annino, Ferroelectrics, 367(1), 149 (2008).

  10. L. Z. Zhang, H. X. Lin, H. Ren, X. Y. Zhao, L. Luo, J. Mater. Sci.-Mater. El. 27(5), 5238 (2016)

  11. C.L. Huang, Y.H. Chien, C.F. Shih, H.Y. Chang, Mater. Res. Bull 63, 1 (2015)

    Article  Google Scholar 

  12. C.T. Chen, C.Y. Huang, Y.M. Lin, C.T. Lee, Jpn. J. Appl. Phy 51(1R), 019201 (2012)

    Article  Google Scholar 

  13. M.S. Fu, X.Q. Liu, X.M. Chen, Y.W. Zeng, J. Am. Ceram. Soc. 93(3), 787 (2010)

    Article  Google Scholar 

  14. P.P. Ma, L. Yi, X.Q. Liu, L. Li, X.M. Chen, J. Am. Ceram. Soc. 96(11), 3417 (2013)

    Article  Google Scholar 

  15. P.K. Davies, J.Z. Tong, T. Negas, J. Am. Ceram. Soc. 80(7), 1727 (1997)

    Article  Google Scholar 

  16. J.J. Bian, G.X. Song, K. Yan, J. Eur. Ceram. Soc 27, 2817–2821 (2007)

    Article  Google Scholar 

  17. M.A. Akbas, P.K. Davies, J. Am. Ceram. Soc. 81(4), 1061–1064 (1998)

    Article  Google Scholar 

  18. J.H. Paik, S. Nahm, Y.S. Kim, H.M. Park, H.J. Lee, J.D. Byun, J. Mater. Sci 38, 621–628 (2003)

    Article  Google Scholar 

  19. J.J. Bian, Y.F. Dong, G.X. Song, J. Am. Ceram. Soc. 91(4), 1182 (2008)

    Article  Google Scholar 

  20. N. Setter, L.E. Cross, J. Mater. Sci 15(10), 2478 (1980)

    Article  Google Scholar 

  21. P.P. Ma, H. Gu, X.M. Chen, J. Am. Ceram. Soc. 99(4), 1299 (2016)

    Article  Google Scholar 

  22. P.P. Ma, X.Q. Liu, F.Q. Zhang, J.J. Xing, X.M. Chen, J. Am. Ceram. Soc. 98(8), 2534 (2015)

    Article  Google Scholar 

  23. R.D. Shannon, J. Appl. Phys 73(1), 348 (1993)

    Article  Google Scholar 

  24. I.T. Kim, Y.H. Kim, S.J. Chung, J. Mater. Res. 12, 518 (1997)

    Article  Google Scholar 

  25. S.Z. Jiang, Z.X. Yue, F. Shi, J. Alloy. Compd 646, 49 (2015)

    Article  Google Scholar 

  26. C.T. Lee, Y.C. Lin, C.Y. Huang, C.Y. Su, C.L. Hu, J. Am. Ceram. Soc. 90, 483–489 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Technology Projects of the Scientific Innovation Research of College Graduate in Jiangsu province (Project No. CXLX13_403), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Project No. SKL201309SIC) and Science and Technology Projects of Guangdong Province (Project No. 2011A091103002), College Industrialization Project of Jiangsu Province (JHB2012-12), Scientific Research Project of Changshu Institute of Technology (XZ1522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhefei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yao, J., Yin, S. et al. Structure and microwave dielectric properties of (Ba1 − xSm2x/3)((Co0.7Mg0.3)1/3Nb2/3)O3 ceramics. J Mater Sci: Mater Electron 28, 10277–10282 (2017). https://doi.org/10.1007/s10854-017-6795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6795-8

Keywords

Navigation