Skip to main content
Log in

Comparison of ruthenium composites with thermally reduced graphene and activated carbon for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ruthenium composites are synthesized by using a sol–gel method with thermally reduced graphene and activation carbon. The specific capacitance of the ruthenium composite with graphene is much higher (440 F g−1) than that of the composite with activated carbon (246 F g−1). The difference is due to the different hydrous and anhydrous ruthenium content of the composites. The activated carbon has micro pores (8.7 Å) with a three-dimensional structure, while the graphene has meso pores (68.9 Å) in a two dimensional structure, resulting that the hydrous ruthenium is likely to be intercalated into graphene rather than the activated carbon. The ruthenium composite with graphene, therefore, has a similar amount of hydrous and anhydrous ruthenium, offering optimized proton and electron paths for electrolyte ions with respect to supercapacitor performance. The composite with activated carbon, however, has more anhydrous ruthenium than the hydrous ruthenium, thereby limiting the proton path. As a result, the ruthenium composite with thermally reduced graphene could provide effective and positive electrodes for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical supercapacitor scientific fundamentals and technological applications. (Klumwer Academic/Plenum Publishers, New York, 2010)

    Google Scholar 

  2. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y

    Article  Google Scholar 

  3. C. Liu, Z. Yu, D. Neff, Z. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). doi:10.1021/nl102661q

    Article  Google Scholar 

  4. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001). doi:10.1016/S0008-6223(00)00183-4

    Article  Google Scholar 

  5. M. Inagaki, H. Konnoa, O. Tanaike, Carbon materials for electrochemical capacitors. J. Power Sour. 195, 7880–7903 (2010). doi:10.1016/j.jpowsour.2010.06.036

    Article  Google Scholar 

  6. Y. Zhu, S. Murali, M.D. Stoller et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). doi:10.1126/science.1200770

    Article  Google Scholar 

  7. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, Graphene electrochemistry: fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 6944–6976 (2012). doi:10.1039/c2cs35105f

    Article  Google Scholar 

  8. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem. B 109, 7330–7338 (2005). doi:10.1021/jp044252o

    Article  Google Scholar 

  9. O. Barbieri, M. Hahn, A. Foelske, R. Kotz, Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors. J. Electrochem. Soc. 153(11), A2049–A2054 (2006). doi:10.1149/1.2338633.

    Article  Google Scholar 

  10. W. Sugimoto, K. Yokoshima, Y. Murakami, Y. Takasu, Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim. Acta 52, 1742–1748 (2006). doi:10.1016/j.electacta.2006.02.054

    Article  Google Scholar 

  11. H.K. Jeong, Y.P. Lee, R.J.W.E Lahaye et al., Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130, 1362–1366 (2008). doi:10.1021/ja076473o

    Article  Google Scholar 

  12. M.H. Tran, H.K. Jeong, Effective reduction of graphene oxide for energy-storage devices. New Phys. 65(3), 240–244 (2015). doi:10.3938/NPSM.65.240

    Google Scholar 

  13. Y. Sato, K. Yomogida, T. Nanaumi, K. Kobayakawa, Y. Ohsawa, M. Kawai, Electrochemical behavior of activated-carbon capacitor materials loaded with ruthenium oxide. Electrochem. Solid State Lett. 3(3), 113–116 (2000). doi:10.1149/1.1390974

    Article  Google Scholar 

  14. J.P. Zheng, C.K. Huang, Electrochemical behavior of amorphous and crystalline ruthenium oxide electrodes. J. New Mater. Electrochem. Syst. 5, 41–46 (2002). doi:10.1142/S0217979202015650

    Google Scholar 

  15. P.G. Collins, Defects and disorder in carbon nanotubes, ed. by A.V. Narlikar, Y.Y. Fu in Oxford handbook of nanoscience and technology: frontiers and advances (Oxford University Press, Oxford, 2009)

    Google Scholar 

  16. S. Letardi, M. Celino, F. Cleri, V. Rosato, Atomic hydrogen adsorption on a stone-wales defect in graphite. Surf. Sci. 496, 33–38 (2002). doi:10.1016/S0039-6028(01)01437-6

    Article  Google Scholar 

  17. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2011). doi:10.1021/nn102598m

    Article  Google Scholar 

  18. H. Kim, B. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J. Power Sour. 104, 52–61 (2002). doi:10.1016/S0378-7753(01)00903-X

    Article  Google Scholar 

  19. Moulder JF, Stickle WF, Sobol PE and Bomben KD, Handbook of X-ray photoelectron spectroscopy. (Perkin Elmer Cooperation, Eden Prairie, 1992)

    Google Scholar 

  20. Hien N.T.B., Kim H.Y., Yeon M. et al., Ru–N–C hybrid nanocomposite for ammonia dehydrogenation: influence of n-doping on catalytic activity. Materials 8, 3442–3455 (2015). doi:10.3390/ma8063442.

    Article  Google Scholar 

  21. D. Rochefort, P. Dabo, D. Guay, P.M.A. Sherwood, XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim. Acta 48, 4246–4252 (2003). doi:10.1016/S0013-4686(03)00611-X

    Article  Google Scholar 

  22. C. Mun, J.J. Ehrhardt, L. Lambert, C. Madic, XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment building. Appl. Surf. Sci. 253, 7613–7621 (2007). doi:10.1016/j.apsusc.2007.03.071

    Article  Google Scholar 

  23. S. Barison, D. Barreca, S. Daolio, M. Fabrizio, E. Tondello, Influence of electrochemical processing on the composition and microstructure of chemical-vapor deposited Ru and RuO2 nanocrystalline films. J Mater. Chem. 12, 1511–1518 (2002). doi:10.1039/B110611M

    Article  Google Scholar 

  24. M.J. Gladys, A. Mikkelsen, J.N. Andersen, G. Held, Water adsorption on O-covered Ru{0001}: coverage-dependent change from dissociation to molecular adsorption. Chem. Phys. Lett. 414, 311–315 (2005). doi:10.1016/j.cplett.2005.08.077

    Article  Google Scholar 

  25. G. Socrates, Infrared and Raman characteristic group frequencies, 3rd edn. (Wiley, New York, 2001)

    Google Scholar 

  26. M.H. Tran, J. Han, B.J. Min, C.W. Lee, S.H. Jang, H.K. Jeong, Effect of amino acid immobilization on the impedance of graphene oxide. Chem Phys Lett. 627, 130–133 (2015). doi:10.1016/j.cplett.2015.03.053.

    Article  Google Scholar 

  27. D.A. Dornbusch, R. Hilton, M.J. Gordon, G.J. Suppes, Effects of Sonication on EIS Results for Zinc Alkaline Batteries. ECS Electrochem. Lett. 2(9), A89–A92 (2013). doi:10.1149/2.006309eel

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Daegu University Research Grant, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Kyung Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, MH., Jeong, H.K. Comparison of ruthenium composites with thermally reduced graphene and activated carbon for supercapacitor applications. J Mater Sci: Mater Electron 28, 7969–7975 (2017). https://doi.org/10.1007/s10854-017-6500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6500-y

Keywords

Navigation