Skip to main content
Log in

The preparation and phase transformation characteristics of γ-Ti3O5 thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high purity γ-Ti3O5 thin films deposited on single-crystal SiO2 substrates are firstly prepared via sol–gel method combined with hydrogen reduction processing. In this reported work, the influences of reduction of temperature, hydrogen flow rate and holding time on the reduced phases are investigated. The as-prepared materials are characterized by glancing incident angle X-ray diffraction, scanning electron microscopy. Based on the results of single factor and orthogonal tests, the optimum condition for synthesizing high purity Ti3O5 thin films are as follows: the hydrogen gas flow rate is 0.8 L min−1, the reduction temperature is 1150 °C and the holding time is 1 h. Temperature dependence of PXRD patterns and electrical conductivity (σ) variation demonstrates that the temperature of phase transition between monoclinic I2/c crystal structure of γ-Ti3O5 thin film and monoclinic P2/a crystal structure of δ-Ti3O5 thin film was 225 K. The four-point probe test shows that the room-temperature conductivity of γ-Ti3O5 thin film is 202.1 S m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zheng, The preparation and oxygen-sensing properties of α-Ti3O5 thin film. Sens. Actuators B 88, 115–119 (2003)

    Article  Google Scholar 

  2. D. Wei, W. Huang, Q. Shi, T. Lu, B. Huang, Effect of coating layers on nano-TiO2 particles on the preparation of nanocrystalline λ-Ti3O5 by carbonthermal reduction. J. Mater. Sci. 27, 4216–4222 (2016)

    Google Scholar 

  3. L. Kotsedi, Z.Y. Nuru, S.M. Eaton, F.R. Cummings, S. Lo Turco, O.M. Ntwaeaborwa, R. Ramponi, M. Maaza, Titanium oxide nanocoating on a titanium thin film deposited on a glass substrate. Thin Solid Films 603, 446–451 (2016)

    Article  Google Scholar 

  4. Y. Wu, Q. Zhang, X. Wu, S. Qin, J. Liu, High pressure structural study of β-Ti3O5: X-ray diffraction and Raman spectroscopy. J. Solid State Chem. 192, 356–359 (2012)

    Article  Google Scholar 

  5. E. Vallejo, D. Olguin, New metastable phases in a trititanium pentoxide compound. Mater. Res. Express. 2, 126101 (2015)

    Article  Google Scholar 

  6. M. Onoda, Phase Transitions of Ti3O5. J. Solid State Chem. 136, 67–73 (1998)

    Article  Google Scholar 

  7. K. Tanaka, T. Nasu, Y. Miyamoto, N. Ozaki, S. Tanaka et al., Structural phase transition between γ-Ti3O5 and δ-Ti3O5 by breaking of a one-dimensionally conducting pathway. Cryst. Growth Des. 15, 653–657 (2014)

    Article  Google Scholar 

  8. H. Tokoro, M. Yoshikiyo, K. Imoto, A. Namai, T. Nasu, K. Nakagawa, N. Ozaki, F. Hakoe, K. Tanaka, K. Chiba, R. Makiura, K. Prassides, S.-I. Ohkoshi, External stimulation-controllable heat-storage ceramics. Nat. Commun. 6, 7037 (2015)

    Article  Google Scholar 

  9. R. Makiura, Y. Takabayashi, A.N. Fitch, H. Tokoro, S. Ohkoshi, K. Prassides, Nanoscale effects on the stability of the λ-Ti3O5 polymorph. Supporting Information, Chem. Asian J. 6, 1886–1890 (2011)

    Article  Google Scholar 

  10. S.-I. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, H. Tokoro, Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nat. Chem. 2, 539–545 (2010)

    Article  Google Scholar 

  11. S. Åsbrink, A. Magnéli, Crystal structure studies on trititanium pentoxide, Ti3O5. Acta Crystallogr. 12, 575–581 (1959)

    Article  Google Scholar 

  12. H. Iwasaki, N. Bright, J. Rowland, The polymorphism of the oxide Ti3O5. J. Less Common Metals 17, 99–110 (1969)

    Article  Google Scholar 

  13. S.-H. Hong, S. Åsbrink, The structure of γ- Ti3O5 at 297 K. Acta Crystallogr. Sect. B. 38, 2570–2576 (1982)

    Article  Google Scholar 

  14. R. Zhu, Y. Liu, J. Ye, X. Zhang, Magnéli phase Ti4O7 powder from carbothermal reduction method: Formation, conductivity and optical properties. J. Mater. Sci. 24, 4853–4856 (2013)

    Google Scholar 

  15. Y. Chen, J. Mao, Sol–gel preparation and characterization of black titanium oxides Ti2O3 and Ti3O5. J. Mater. Sci. 25, 1284–1288 (2014)

    Google Scholar 

  16. Z. Ertekin, U. Tamer, K. Pekmez, Cathodic electrochemical deposition of Magnéli phases TinO2n–1 thin films at different temperatures in acetonitrile solution. Electrochim. Acta 163, 77–81 (2015)

    Article  Google Scholar 

  17. C. Hauf, R. Kniep, G. Pfaff, Preparation of various titanium suboxide powders by reduction of TiO2 with silicon. J. Mater. Sci 34, 1287–1292 (1999)

    Article  Google Scholar 

  18. T. Nasu, H. Tokoro, K. Tanaka, F. Hakoe, A. Namai, S.I. Ohkoshi, Sol–gel synthesis of nanosized λ-Ti3O5 crystals. IOP Conf. Ser. 54, 012008 (2014)

    Article  Google Scholar 

  19. N. Stem, M.L. De Souza, D.L.A. De Faria, S.G. Dos Santos Filho, Formation of Ti(III) and Ti(IV) states in Ti3O5 nano- and microfibers obtained from hydrothermal annealing of C-doped TiO2 on Si. Thin Solid Films 558, 67–74 (2014)

    Article  Google Scholar 

  20. G. Asbrink, S. Åsbrink, A. Magnéli, H. Okinaka, K. Kosuge, S. Kachi, A Ti3O5 modification of V3O5-type structure. Acta Chem. Scand. 25, 3889–3890 (1971)

    Article  Google Scholar 

  21. Y. Chen, J. Mao, Reduced titanium oxide Ti3O5 powder as a promising conductive additive for LiFePO4-based lithium-ion batteries. J. Mater. Sci. 25, 5153–5157 (2014)

    Google Scholar 

  22. G. Liu, W.-X. Huang, Y. Yi, Preparation and Optical Storage Properties of λ-Ti3O5 Powder. J. Inorg. Mater. 28, 425–430 (2013)

    Article  Google Scholar 

  23. M. Nazari, Y. Zhao, V. V. Kuryatkov, Z.Y. Fan, A.A. Bernussi, M. Holtz, Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations. Phys. Rev. B 87, 1–7 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61271075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanxia Huang or Qiwu Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Huang, W., Shi, Q. et al. The preparation and phase transformation characteristics of γ-Ti3O5 thin film. J Mater Sci: Mater Electron 28, 7868–7873 (2017). https://doi.org/10.1007/s10854-017-6484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6484-7

Keywords

Navigation