Skip to main content
Log in

High performance of covalently grafted poly(o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we have synthesized covalently-grafted poly(o-methoxyaniline) nanocomposites in the presence of amine-functionalization of graphene oxide sheets (POMA/f-GO) via an in situ oxidative polymerization poly(o-methoxyaniline) initiated by those amino groups on graphene. Field emission scanning electron microscopy, Fourier transfer infrared spectroscopy, and X-ray diffraction analyses were conducted to characterize the POMA/f-GO film. The electrochemical performance of the nanocomposite was evaluated by cyclic voltammetry and galvanostatic charge–discharge. The POMA/f-GO nanocomposite showed the highest electrochemical capacitance with a value of 422 F g−1 at 0.5 A g−1 current density and good cycle stability with 4.8% loss of capacitance over 1000 cycles. In comparison with polyaniline/f-GO and poly(o-chloroaniline)/f-GO, the POMA/f-GO nanocomposite demonstrated good cyclic stability. The synthesized nanocomposites showed a unique hierarchical morphology of the POMA array like nanostructures grown on the f-GO sheets, which increased the accessible surface area for the redox reaction and allowed faster ion diffusion for excellent electrochemical performance. This research highlights the importance of introducing amino functional groups of graphene oxide and substitution of aniline which improve the electrochemical properties to achieve highly stable cycling and high capacitance values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.E. Smalley, MRS Bull. 30(06), 412–417 (2005)

    Article  Google Scholar 

  2. K. Wang, H. Wu, Y. Meng, Z. Wei, Small 10(1), 14–31 (2014)

    Article  Google Scholar 

  3. X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 43(10), 3303–3323 (2014)

    Article  Google Scholar 

  4. D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, ACS Appl. Mater. Interfaces 6(1), 200–209 (2014)

    Article  Google Scholar 

  5. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, Prog. Mater. Sci. 56(8), 1178–1271 (2011)

    Article  Google Scholar 

  6. K.R. Reddy, B.C. Sin, K.S. Ryu, J.-C. Kim, H. Chung, Y. Lee, Synth. Met. 159(7–8), 595–603 (2009)

    Article  Google Scholar 

  7. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39(1), 228–240 (2010)

    Article  Google Scholar 

  8. Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Nano Lett. 12(8), 4206–4211 (2012)

    Article  Google Scholar 

  9. L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, ACS Nano 6(7), 5941–5951 (2012)

    Article  Google Scholar 

  10. K.R. Reddy, K.-P. Lee, Y. Lee, A.I. Gopalan, Mater. Lett. 62(12–13), 1815–1818 (2008)

    Article  Google Scholar 

  11. K. R. Reddy, K.-P. Lee, A. I. Gopalan and A. M. Showkat, Polym. Adv. Technol. 18(1), 38–43 (2007)

    Article  Google Scholar 

  12. Z. Bai, Q. Zhang, J. Lv, S. Chao, L. Yang, J. Qiao, Electrochim. Acta 177, 107–112 (2015)

    Article  Google Scholar 

  13. Y.-P. Zhang, S.-H. Lee, K.R. Reddy, A.I. Gopalan, K.-P. Lee, J. Appl. Polym. Sci. 104(4), 2743–2750 (2007)

    Article  Google Scholar 

  14. K.R. Reddy, W. Park, B.C. Sin, J. Noh, Y. Lee, J. Colloid Interface Sci. 335(1), 34–39 (2009)

    Article  Google Scholar 

  15. K.R. Reddy, B.C. Sin, K.S. Ryu, J. Noh, Y. Lee, Synth. Met. 159(19–20), 1934–1939 (2009)

    Article  Google Scholar 

  16. K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1–16 (2015)

    Article  Google Scholar 

  17. M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Compos. Sci. Technol. 98, 1–8 (2014)

    Article  Google Scholar 

  18. K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Nanosci. Nanotechnol. 7(9), 3117–3125 (2007)

    Article  Google Scholar 

  19. K.R. Reddy, K.-P. Lee, A.I. Gopalan, H.-D. Kang, React. Funct. Polym. 67(10), 943–954 (2007)

    Article  Google Scholar 

  20. P.A. Basnayaka, M.K. Ram, L. Stefanakos, A. Kumar, Mater. Chem. Phys. 141(1), 263–271 (2013)

    Article  Google Scholar 

  21. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4(8), 4806–4814 (2010)

    Article  Google Scholar 

  22. Z.-F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, J. Xie, Carbon 71(0), 257–267 (2014)

    Article  Google Scholar 

  23. J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, ACS Nano 4(9), 5019–5026 (2010)

    Article  Google Scholar 

  24. M. Kumar, K. Singh, S.K. Dhawan, K. Tharanikkarasu, J.S. Chung, B.-S. Kong, E.J. Kim, S.H. Hur, Chem. Eng. J. 231, 397–405 (2013)

    Article  Google Scholar 

  25. P. Yu, Y. Li, X. Zhao, L. Wu, Q. Zhang, Langmuir 30(18), 5306–5313 (2014)

    Article  Google Scholar 

  26. M. Zhong, Y. Song, Y. Li, C. Ma, X. Zhai, J. Shi, Q. Guo, L. Liu, J. Power Sources 217, 6–12 (2012)

    Article  Google Scholar 

  27. M. O. Ansari and F. Mohammad, Sens. Actuators B Chem. 157(1), 122–129 (2011)

    Article  Google Scholar 

  28. M. Kim, C. Lee, J. Jang, Adv. Funct. Mater. 24(17), 2489–2499 (2014)

    Article  Google Scholar 

  29. G.-L. Chen, S.-M. Shau, T.-Y. Juang, R.-H. Lee, C.-P. Chen, S.-Y. Suen, R.-J. Jeng, Langmuir 27(23), 14563–14569 (2011)

    Article  Google Scholar 

  30. L. Lai, L. Chen, D. Zhan, L. Sun, J. Liu, S.H. Lim, C.K. Poh, Z. Shen, J. Lin, Carbon 49(10), 3250–3257 (2011)

    Article  Google Scholar 

  31. Y. Liu, Y. Ma, S. Guang, H. Xu, X. Su, J. Mater. Chem. A 2(3), 813–823 (2014)

    Article  Google Scholar 

  32. N. Lingappan, D.H. Kim, K.T. Lim, Mol. Cryst. Liq. Cryst. 580(1), 69–75 (2013)

    Article  Google Scholar 

  33. L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou and Y. Song, Sci. Rep. 3, 1–9 (2013)

    Google Scholar 

  34. L. Wang, Y. Ye, X. Lu, Z. Wen, Z. Li, H. Hou and Y. Song, Sci. Rep. 3, 3568 (2013).

    Google Scholar 

  35. Z.-F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, J. Xie, Carbon 71, 257–267 (2014)

    Article  Google Scholar 

  36. X. Liu, P. Shang, Y. Zhang, X. Wang, Z. Fan, B. Wang, Y. Zheng, J. Mater. Chem. A 2(37), 15273–15278 (2014)

    Article  Google Scholar 

  37. Y. Liu, Y. Ma, S. Guang, F. Ke, H. Xu, Carbon 83, 79–89 (2015)

    Article  Google Scholar 

  38. W. Wu, Y. Li, G. Zhao, L. Yang, D. Pan, J. Mater. Chem. A 2(42), 18058–18069 (2014)

    Article  Google Scholar 

  39. P. Xu, X. Han, B. Zhang, N.H. Mack, S.-H. Jeon, H.-L. Wang, Polymer 50(12), 2624–2629 (2009)

    Article  Google Scholar 

  40. D. Profeti, P. Olivi, Electrochim. Acta 49(27), 4979–4985 (2004)

    Article  Google Scholar 

  41. W. Fan, C. Zhang, W.W. Tjiu, K.P. Pramoda, C. He, T. Liu, ACS Appl. Mater. Interfaces 5(8), 3382–3391 (2013)

    Article  Google Scholar 

  42. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, ACS Appl. Mater. Interfaces 2(3), 821–828 (2010)

    Article  Google Scholar 

  43. J. Li, H. Xie, Y. Li, J. Liu, Z. Li, J. Power Sources 196(24), 10775–10781 (2011)

    Article  Google Scholar 

  44. Q. Wang, J. Yan, Z. Fan, T. Wei, M. Zhang, X. Jing, J. Power Sources 247, 197–203 (2014)

    Article  Google Scholar 

  45. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, Nano Lett. 13(1), 72–78 (2013)

    Article  Google Scholar 

  46. Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S.M. Lee, H. Lee, Adv. Mater. 25(32), 4437–4444 (2013)

    Article  Google Scholar 

  47. F. Beck, Electroanalysis 7(3), 298–298 (1995)

    Article  Google Scholar 

  48. X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 6(4), 232–236 (2011)

    Article  Google Scholar 

  49. T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, ACS Nano 5(1), 436–442 (2011)

    Article  Google Scholar 

  50. Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater. 18(19), 2619–2623 (2006)

    Article  Google Scholar 

  51. H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6(1), 41–53 (2013)

    Article  Google Scholar 

  52. H. Zhou, Y. Sun, G. Li, S. Chen, Y. Lu, Polymer 55(17), 4459–4467 (2014)

    Article  Google Scholar 

  53. P. Xiong, H. Huang, X. Wang, J. Power Sources 245, 937–946 (2014)

    Article  Google Scholar 

  54. Y. Li, Y. Fang, H. Liu, X. Wu, Y. Lu, Nanoscale 4(9), 2867–2869 (2012)

    Article  Google Scholar 

  55. J. Yan, L. Yang, M. Cui, X. Wang, K.J. Chee, V.C. Nguyen, V. Kumar, A. Sumboja, M. Wang and P.S. Lee, Adv. Energy Mater. 4(18) (2014)

Download references

Acknowledgements

The authors are grateful for the financial support of “Iran Nanotechnology Initiative Council”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Jamaleddin Peighambardoust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Peighambardoust, S.J., Entezami, A.A. et al. High performance of covalently grafted poly(o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. J Mater Sci: Mater Electron 28, 5776–5787 (2017). https://doi.org/10.1007/s10854-016-6248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6248-9

Keywords

Navigation