Skip to main content
Log in

The phase structure and electrical performance of the limited solid solution CuFeO2–CuAlO2 thermoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The limited solid solutions of nominal (1 − x) CuFeO2 − xCuAlO2 have been prepared by conventional solid-state reaction, and thermoelectric property has been measured. From the XRD powder pattern, we found that the major phase of the limited solid solution is rhombohedral delafossite structure when the composition is near the end members. Cubic Cu(Fe,Al)2O4 phase has been formed in composition from x = 0.4 to 0.8. Electrical resistivity of samples with major delafossite structure is lower than that of samples with Cu(Fe,Al)2O4 phase. In the zone of phase transform, the electrical resistivity can be got with lower value, such as x = 0.2, 0.3 and 0.9. The Seebeck coefficient for the limited solid solution with delafossite structure is positive in whole measured temperature range from 300 to 923 K. In the end, the power factor for the limited solid solution with major delafossite structure shows higher value, which is resulted from the lower electrical resistivity by the phase transposition. The highest power factor of 1.14 × 10−4 W/mK2 has been addressed at 907 K for x = 0.2, which value is enhanced by 3–4 times than that of pure phase CuFeO2 or CuAlO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Goldsmid, Thermoelectric Refrigeration. (Springer, Berlin, 2013)

    Google Scholar 

  2. D.M. Rowe, CRC Handbook of Thermoelectrics. (CRC press, Boca Raton, 1995)

    Book  Google Scholar 

  3. T. Tritt, Recent Trends in Thermoelectric Materials Research, Part Two. (Academic Press, San Diegon, 2000)

    Google Scholar 

  4. A. Li Bassi, A. Bailini, C.S. Casari et al., J. Appl. Phys. 105, 124307 (2009)

    Article  Google Scholar 

  5. H. Wang, J. Hwang, M.L. Snedaker et al., Chem. Mater. 27, 944 (2015)

    Article  Google Scholar 

  6. H. Wang, J.H. Bahk, C. Kang et al., Proc. Natl. Acad. Sci. USA 111, 10949 (2014)

    Article  Google Scholar 

  7. X.W. Wang, H. Lee, Y.C. Lan et al., Appl. Phys. Lett. 93, 193121 (2008)

    Article  Google Scholar 

  8. L.D. Zhao, S.H. Lo, Y. Zhang et al., Nature 508, 373 (2014)

    Article  Google Scholar 

  9. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    Article  Google Scholar 

  10. M. Ohtaki, K. Araki, K. Yamamoto, J. Electron. Mater. 38, 1234 (2009)

    Article  Google Scholar 

  11. J. Lan, Y.-H. Lin, Y. Liu et al., J. Am. Ceram. Soc. 95, 2465 (2012)

    Article  Google Scholar 

  12. S. Yanagiya, N.V. Nong, J. Xu et al., J. Electron. Mater. 40, 674 (2011)

    Article  Google Scholar 

  13. Y. Zhu, C. Wang, H. Wang et al., Mater. Chem. Phys. 144, 385 (2014)

    Article  Google Scholar 

  14. H. Wang, W. Su, J. Liu et al., Journal of Materiomics 2, 225 (2016)

    Article  Google Scholar 

  15. H. Wang, C. Wang, Ceram. Int. 39, 941 (2013)

    Article  Google Scholar 

  16. H.C. Wang, C.L. Wang, W.B. Su et al., J. Am. Ceram. Soc. 94, 838 (2011)

    Article  Google Scholar 

  17. H.C. Wang, C.L. Wang, W.B. Su et al., Mater. Res. Bull. 45, 809 (2010)

    Article  Google Scholar 

  18. Y. Sun, C.L. Wang, H.C. Wang et al., J. Mater. Sci. 46, 5278 (2011)

    Article  Google Scholar 

  19. N. Van Nong, N. Pryds, S. Linderoth et al., Adv. Mater. 23, 2484 (2011)

    Article  Google Scholar 

  20. J. Sui, J. Li, J. He et al., Energy Environ. Sci. 6, 2916 (2013)

    Article  Google Scholar 

  21. M. Shikano, R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003)

    Article  Google Scholar 

  22. T. Ishiguro, A. Kitazawa, N. Mizutani et al., J. Solid State Chem. 40, 170 (1981)

    Article  Google Scholar 

  23. K. Koumoto, H. Koduka, W.-S. Seo, J. Mater. Chem. 11, 251 (2001)

    Article  Google Scholar 

  24. H. Akyildiz, Ceram. Int. 41, 14108 (2015)

    Article  Google Scholar 

  25. C. Ruttanapun, A. Wichainchai, W. Prachamon et al., J. Alloys Compd. 509, 4588 (2011)

    Article  Google Scholar 

  26. K. Park, K.Y. Ko, H.C. Kwon et al., J. Alloys Compd. 437, 1 (2007)

    Article  Google Scholar 

  27. Y. Isoda, T. Nagai, H. Fujiu et al, 25th international conference on thermoelectrics, 2006

  28. V. Zaitsev, M. Fedorov, E. Gurieva et al., Phys. Rev. B 74, 045207 (2006)

    Article  Google Scholar 

  29. T. Sakamoto, T. Iida, A. Matsumoto et al., J. Electron. Mater. 39, 1708 (2010)

    Article  Google Scholar 

  30. S.-M. Choi, T.H. An, W.-S. Seo et al., J. Electron. Mater. 41, 1071 (2012)

    Article  Google Scholar 

  31. C. Ruttanapun, P. Jindajitawat, P. Buranasiri et al., Integr. Ferroelectr. 156, 102 (2014)

    Article  Google Scholar 

  32. Y.-C. Liou, L.-S. Chang, Y.-M. Lu et al., Ceram. Int. 38, 3619 (2012)

    Article  Google Scholar 

  33. T. Zhao, M. Hasegawa, T. Kondo et al., Mater. Res, Bull. 32, 151 (1997)

    Article  Google Scholar 

  34. V. Siriwongrungson, A. Sakulkalavek, R. Sakdanuphab, J. Mater. Sci: Mater. Electron. 27, 11102 (2016)

    Google Scholar 

  35. K. Park, K.Y. Ko, S.W. Seo, J. Eur. Ceram. Soc. 25, 2219 (2005)

    Article  Google Scholar 

  36. Z. Deng, X. Zhu, R. Tao et al., Mater. Lett. 61, 686 (2007)

    Article  Google Scholar 

  37. N. Wongcharoen, T. Gaewdang, Physics Procedia 2, 101 (2009)

Download references

Acknowledgements

The work is financially supported by National Basic Research Program of China of 2013CB632506, Natural Science Fund of China under Grant Nos. 51501105 and 51672159, Projects of International Cooperation and Exchanges NSFC under Grant No.51611540342, Young Scholars Program of Shandong University under Grant No. 2015WLJH21, China Postdoctoral Science Foundation under Grant Nos. 2015M580588 and 2016T90631, Postdoctoral Innovation Foundation of Shandong Province under Grant No. 201603027, The Fundamental Research Funds of Shandong University under Grant No. 2015TB019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchao Wang or Chunlei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Wang, H., Su, W. et al. The phase structure and electrical performance of the limited solid solution CuFeO2–CuAlO2 thermoelectric ceramics. J Mater Sci: Mater Electron 28, 5053–5057 (2017). https://doi.org/10.1007/s10854-016-6162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6162-1

Keywords

Navigation