Skip to main content

Advertisement

Log in

Ce–S codoped TiO2–SiO2 composite nanocrystalline film with visible light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A sol–gel method is used to synthesize Ce–S codoped TiO2–SiO2 composite nanocrystalline films on the glass substrates in this paper. The influence of the metal/nonmetal ions codoping on both the physicochemical characteristics and photocatalytic performance of the composite film was studied. It was found that ions codoping induces a better charge separation and a smaller band gap energy, which are responsible for the improvement in the photo-degradation with respect to the acid naphthol red aqueous solution under visible light illumination. Moreover, the morphology, crystalline structures and compositions of the films were analyzed, and the doping mechanism was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Yan, T. Wang, G. Wu et al., Adv. Mater. 27, 1580 (2015). doi:10.1002/adma.201404792

    Article  Google Scholar 

  2. C. Kaewtip, K. Accanit, N-a-n Chaowai, K. Areerat, P. Reanjaruan, V. Boonumnauyvitaya, Adv. Mater. Phys. Chem. 02, 40 (2012). doi:10.4236/ampc.2012.24B012

    Article  Google Scholar 

  3. C. Kaewtip, P. Chadpunyanun, V. Boonamnuayvitaya, Water Air Soil Pollut. 223, 1455 (2011). doi:10.1007/s11270-011-0957-8

    Article  Google Scholar 

  4. Y. Yao, N. Zhao, J.-J. Feng, M.-M. Yao, F. Li, Ceram. Int. 39, 4735 (2013). doi:10.1016/j.ceramint.2012.11.035

    Article  Google Scholar 

  5. L. Zhang, X. Li, Z. Chang, D. Li, Mater. Sci. Semicond. Process. 14, 52 (2011). doi:10.1016/j.mssp.2011.01.004

    Article  Google Scholar 

  6. K. Das, S.N. Sharma, M. Kumar, S.K. De, J. Phys. Chem. C 113, 14783 (2009)

    Article  Google Scholar 

  7. J. Xu, X. Xiao, A.L. Stepanov et al., Nanoscale Res. Lett. (2013). doi:10.1186/1556-276X-8-73

    Google Scholar 

  8. J. Zhou, Y. Cheng, J. Yu, J. Photochem. Photobiol. A 223, 82 (2011). doi:10.1016/j.jphotochem.2011.07.016

    Article  Google Scholar 

  9. J. Zhou, F. Ren, S. Zhang et al., J. Mater. Chem. A 1, 13128 (2013). doi:10.1039/c3ta12540h

    Article  Google Scholar 

  10. F. Dong, W. Zhao, Z. Wu, Nanotechnology 19, 365607 (2008). doi:10.1088/0957-4484/19/36/365607

    Article  Google Scholar 

  11. J. Xu, B. Yang, M. Wu, Z. Fu, Y. Lv, Y. Zhao, J. Phys. Chem. 114, 15251 (2010)

    Google Scholar 

  12. W.J. Lee, J.M. Lee, S.T. Kochuveedu et al., ACS Nano 5, 935 (2012)

    Article  Google Scholar 

  13. D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007)

    Article  Google Scholar 

  14. F. Li, H. Li, L-x Guan, M-m Yao, Chem. Eng. J. 252, 1 (2014). doi:10.1016/j.cej.2014.04.107

    Article  Google Scholar 

  15. N. Zhang, S. Liu, X. Fu, Y.-J. Xu, J. Phys. Chem. C 115, 9136 (2011). doi:10.1021/jp2009989

    Article  Google Scholar 

  16. X. Ye, C. Zheng, X. Xiao, S. Cai, Mater. Lett. 141, 191 (2015). doi:10.1016/j.matlet.2014.11.085

    Article  Google Scholar 

  17. P. Qiu, W. Li, B. Thokchom et al., J. Mater. Chem. A 3, 6492 (2015). doi:10.1039/c4ta06891b

    Article  Google Scholar 

  18. W. Li, J. Yang, Z. Wu et al., J. Am. Chem. Soc. 134, 11864 (2012). doi:10.1021/ja3037146

    Article  Google Scholar 

  19. J. Du, J. Qi, D. Wang, Z. Tang, Energy Environ. Sci. 5, 6914 (2012). doi:10.1039/c2ee21264a

    Article  Google Scholar 

  20. X.W. Lou, L.A. Archer, Adv. Mater. 20, 1853 (2008). doi:10.1002/adma.200702379

    Article  Google Scholar 

  21. X. Wu, G.Q. Lu, L. Wang, Energy Environ. Sci. 4, 3565 (2011). doi:10.1039/c0ee00727g

    Article  Google Scholar 

  22. J. Xu, M. Chen, D. Fu, Appl. Surf. Sci. 257, 7381 (2011). doi:10.1016/j.apsusc.2011.02.030

    Article  Google Scholar 

  23. M.M. Momeni, M. Hakimian, A. Kazempour, Surf. Eng. 32, 514 (2016). doi:10.1179/1743294415y.0000000073

    Article  Google Scholar 

  24. M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Surf. Eng. 32, 520 (2016). doi:10.1179/1743294415y.0000000061

    Article  Google Scholar 

  25. M.M. Momeni, Mater. Res. Innov. 20, 317 (2016). doi:10.1080/14328917.2016.1138585

    Article  Google Scholar 

  26. M.M. Momeni, Y. Ghayeb, J. Solid State Electrochem. 20, 683 (2015). doi:10.1007/s10008-015-3093-3

    Article  Google Scholar 

  27. M.M. Momeni, Y. Ghayeb, J. Electroanal. Chem. 751, 43 (2015). doi:10.1016/j.jelechem.2015.05.035

    Article  Google Scholar 

  28. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Solid State Electrochem. 739, 149 (2015). doi:10.1016/j.jelechem.2014.12.030

    Google Scholar 

  29. M.M. Momeni, Y. Ghayeb, J. Alloys Compd. 637, 393 (2015). doi:10.1016/j.jallcom.2015.02.137

    Article  Google Scholar 

  30. M.M. Momeni, Z. Nazari, Ceram. Int. 42, 8691 (2016). doi:10.1016/j.ceramint.2016.02.103

    Article  Google Scholar 

  31. M.M. Momeni, M. Hakimian, A. Kazempour, Ceram. Int. 41, 13692 (2015). doi:10.1016/j.ceramint.2015.07.158

    Article  Google Scholar 

  32. M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Ceram. Int. 41, 8735 (2015). doi:10.1016/j.ceramint.2015.03.094

    Article  Google Scholar 

  33. M.M. Momeni, Appl. Surf. Sci. 357, 160 (2015). doi:10.1016/j.apsusc.2015.09.015

    Article  Google Scholar 

  34. M.M. Momeni, M. Mirhosseini, M. Chavoshi, A. Hakimizade, J. Mater. Sci.: Mater. Electron. 27, 3941 (2016). doi:10.1007/s10854-015-4246-y

    Google Scholar 

  35. M.M. Momeni, Y. Ghayeb, J. Mater. Sci.: Mater. Electron. 27, 3318 (2016). doi:10.1007/s10854-015-4161-2

    Google Scholar 

  36. M.M. Momeni, I. Ahadzadeh, A. Rahmati, J. Mater. Sci.: Mater. Electron. 27, 8646 (2016). doi:10.1007/s10854-016-4885-7

    Google Scholar 

  37. M.M. Momeni, Y. Ghayeb, J. Mater. Sci.: Mater. Electron. 26, 5509 (2015). doi:10.1007/s10854-015-3108-y

    Google Scholar 

  38. M.M. Momeni, Y. Ghayeb, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016). doi:10.1007/s00339-016-0145-1

    Article  Google Scholar 

  39. S. Zhang, M. Han, J. Zhang, Y. Li, Z. Hu, J. Chu, ACS Appl. Mater. Interfaces 5, 3191 (2013). doi:10.1021/am400196c

    Article  Google Scholar 

  40. I.K. Battisha, J. Non Cryst. Solids 353, 1748 (2007). doi:10.1016/j.jnoncrysol.2007.01.043

    Article  Google Scholar 

  41. M.-L. Dai, L.-X. Guan, F. Li, M.-M. Yao, Ceram. Int. 40, 7651 (2014). doi:10.1016/j.ceramint.2013.12.045

    Article  Google Scholar 

  42. M. Yousefi, M. Amiri, R. Azimirad, A.Z. Moshfegh, J. Electroanal. Chem. 661, 106 (2011). doi:10.1016/j.jelechem.2011.07.022

    Article  Google Scholar 

  43. X. Ren, Q. Ma, H. Fan et al., Chem. Commun. (Camb.) 51, 15997 (2015). doi:10.1039/c5cc06847a

    Article  Google Scholar 

  44. Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier, Adv. Mater. 18, 1421 (2006). doi:10.1002/adma.200502723

    Article  Google Scholar 

  45. J. Liu, R. Han, Y. Zhao et al., J. Phys. Chem. C 115, 4507 (2011). doi:10.1021/jp110814b

    Article  Google Scholar 

  46. Y. Yao, F. Ji, M. Yin et al., ACS Appl. Mater. Interfaces 28, 18165 (2016). doi:10.1021/acsami.6b04692

    Article  Google Scholar 

  47. M.J. Muñoz-Batista, M.N. Gómez-Cerezo, A. Kubacka, D. Tudela, M. Fernández-García, ACS Catal. 4, 63 (2014). doi:10.1021/cs400878b

    Article  Google Scholar 

  48. N.A. Joy, M.I. Nandasiri, P.H. Rogers et al., Anal. Chem. 84, 5025 (2012). doi:10.1021/ac3006846

    Article  Google Scholar 

  49. M.M. Momeni, Indian J. Chem. 55A, 686 (2016)

    Google Scholar 

  50. W. Li, P. Da, Y. Zhang et al., ACS Nano 8, 11770 (2014). doi:10.1021/nn5053684

    Article  Google Scholar 

  51. R. Adhikari, G. Gyawali, T.H. Kim, T. Sekino, S.W. Lee, J. Environ. Chem. Eng. 2, 1365 (2014). doi:10.1016/j.jece.2014.02.019

    Article  Google Scholar 

  52. M.M. Momeni, M. Mirhosseini, M. Chavoshi, Ceram. Int. 42, 9133 (2016). doi:10.1016/j.ceramint.2016.03.002

    Article  Google Scholar 

  53. D. Sánchez-Martínez, C. Gomez-Solis, L.M. Torres-Martinez, Mater. Res. Bull. 61, 165 (2015). doi:10.1016/j.materresbull.2014.10.034

    Article  Google Scholar 

  54. G.-H. He, G.-L. He, A.-J. Li et al., J. Mol. Catal. A Chem. 385, 106 (2014). doi:10.1016/j.molcata.2014.01.022

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge supports from the Key Project of Ningxia Normal University Research Grant (Grant No. NXSFZD1516) and the Liupanshan Resources Engineering Technology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Yao or Ming-ming Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Guan, Lx., Ma, Y. et al. Ce–S codoped TiO2–SiO2 composite nanocrystalline film with visible light photocatalytic activity. J Mater Sci: Mater Electron 28, 3013–3019 (2017). https://doi.org/10.1007/s10854-016-5887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5887-1

Keywords

Navigation