Skip to main content

Advertisement

Log in

Enhancement of photocatalytic activity in Nd doped ZnO with an increase in dielectric constant

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The enhancement of photocatalytic activity in ZnO is achieved via Nd doping through a modified solid state reaction route. This work correlates optical band gap, Urbach energy, photoluminescence emission and dielectric property of the compound with the enhanced photocatalytic activity. Less yield is the main problem faced by photocatalytic industry, which is solved via introducing modified solid state reaction route with high yield. The structural, morphological and composition analyses were carried out with X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy. The dielectric characterization was done with a series LCR meter. The optical and defect studies were done with UV/Vis diffuse reflectance spectroscopy and photoluminescence techniques. The reduction of particle size, the red shift of band gap energy, the photoluminescence quenching and enhanced dielectric constant achieved via Nd doping increased the photocatalytic activity of ZnO. The reusability of photocatalyst was confirmed with a stability test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Sun, W. Zhao, Y. Liu, P. Chen, J. Mater. Sci.: Mater. Electron. 25, 4306 (2014)

    Google Scholar 

  2. F. Jiang, Z. Peng, Y. Zang, X. Fu, J. Adv. Ceram. 2(3), 201 (2013)

    Article  Google Scholar 

  3. S. Kuriakose, B. Satpatib, S. Mohapatra, Phys. Chem. Chem. Phys. 16, 12741 (2014)

    Article  Google Scholar 

  4. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phys. 13, 697 (2013)

    Article  Google Scholar 

  5. K.G. Kanade, B.B. Kale, J.-O. Baeg, S.M. Lee, C.W. Lee, S.-J. Moon, H. Chang, Mater. Chem. Phys. 102, 98 (2007)

    Article  Google Scholar 

  6. J. Xue, S. Ma, Y. Zhou, Z. Zhang, New J. Chem. 39, 1852 (2015)

    Article  Google Scholar 

  7. A. George, S.K. Sharma, S. Chawla, M.M. Malik, M.S. Qureshi, J. Alloys Compd. 509, 5942 (2011)

    Article  Google Scholar 

  8. B.G. Mishra, G.R. Rao, J. Mol. Catal. A: Chem. 243, 204 (2006)

    Article  Google Scholar 

  9. H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B: Environ. 129, 182 (2013)

    Article  Google Scholar 

  10. F. Mohandes, M. Salavati-Niasari, Mater. Res. Bull. 48, 3773 (2013)

    Article  Google Scholar 

  11. N. Talebian, H.S.H. Zavvare, J Photochem. Photobio. B: Bio 130, 132 (2014)

    Article  Google Scholar 

  12. X.-H. Guo, J.-Q. Ma, H.-G. Ge, J. Phys. Chem. Solids 74, 784 (2013)

    Article  Google Scholar 

  13. P. Hemalatha, S.N. Karthick, K.V. Hemalatha, M. Yi, H.-J. Kim, M. Alagar, J. Mater. Sci.: Mater. Electron. 27, 2367 (2016)

    Google Scholar 

  14. N.F. Djaja, R. Saleh, Mater. Sci. Appl. 4, 145 (2013)

    Google Scholar 

  15. Z. Zhao, J.-l. Song, J.-h. Zheng, J.-s. Lian, Trans. Nonferrous Met. Soc. China 24, 1434 (2014)

    Article  Google Scholar 

  16. N.K. Divya, P.P. Pradyumnan, Mater. Sci. Semicond. Process. 41, 428 (2016)

    Article  Google Scholar 

  17. S.Y. Kim, T.-H. Lim, T.-S. Chang, C.-H. Shin, Catal. Lett. 117, 112 (2007)

    Article  Google Scholar 

  18. M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Mater 3, 2643 (2010)

    Article  Google Scholar 

  19. K. Shijina, U. Megha, G. Varghese, J. Lumin. 145, 219 (2014)

    Article  Google Scholar 

  20. H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37, 33 (2005)

    Article  Google Scholar 

  21. M. Ghosh, N. Dilawar, A.K. Bandyopadhay, A.K. Raychaudhari, J. Appl. Phys. 106, 084306 (2009)

    Article  Google Scholar 

  22. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Ceram. Int. 40, 1635 (2014)

    Article  Google Scholar 

  23. N.K. Divya, P.U. Aparna, P.P. Pradyumnan, Adv. Mater. Phys. Chem. 5, 287 (2015)

    Article  Google Scholar 

  24. P.V. Korake, A.N. Kadam, K.M. Garadkar, J. Rare Earths 32(4), 306 (2014)

    Article  Google Scholar 

  25. R. John, R. Rajakumari, Nano-Micro Lett. 4(2), 65 (2012)

    Article  Google Scholar 

  26. D. Das, P. Mondal, RSC Adv. 4, 35735 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Supporting of this investigation by UGC-SAP (F530/2/DRS/2013(SAP-1)) is gratefully acknowledged. Author (P.P.Pradyumnan) thanks DST-SERB (SB/EMEQ-002/2013) Govt. of India, DST-FIST-2 (SR/FIST/PS1-159/2010) Govt. of India, Department of Physics, University of Calicut for financial assistance and equipment facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Pradyumnan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, N.K., Pradyumnan, P.P. Enhancement of photocatalytic activity in Nd doped ZnO with an increase in dielectric constant. J Mater Sci: Mater Electron 28, 2147–2156 (2017). https://doi.org/10.1007/s10854-016-5779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5779-4

Keywords

Navigation