Skip to main content
Log in

The effect of ZnO, Fe3O4 and graphene oxide nanostructures on the microwave absorbing properties of polystyrene composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study a series of polystyrene (PS) nanocomposites such as PS/ZnO, PS/Fe3O4 and PS/graphene oxide nanocomposites were prepared. The novelty of this work is comparing of three various semi-conductor zinc oxide, magnetic Fe3O4 and non-metallic conductive graphene oxide in reflection loss amount. The effect of different percentages of fillers and homogenizer speed on the electromagnetic wave absorption was also investigated. The morphology and particle size of the nanostructures and nanocomposites were examined by scanning electron microscopy. The electromagnetic wave absorption properties of nanocomposites were studied in the frequency range of 5–8 GHz using a vector network analyzer and finally their absorption properties were compared and analyzed. It was found that improving dispersion of nanoparticles resulting from increase in homogenizer speed leads to increase of absorption and band-width. The outcomes show that graphene oxide has substantial effect on absorption in compare with the other nanocomposite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Meng, D. Yuping, L. Shunhua, L. Xiaogang, J. Zhijiang, J. Magn. Magn. Mater. 321, 3442–3446 (2009)

    Article  Google Scholar 

  2. L. Liu, Y. Duan, L. Ma, S. Liu, Z. Yu, Appl. Surf. Sci. 257, 842–846 (2010)

    Article  Google Scholar 

  3. C. Xiang, Y. Pan, J. Guo, Ceram. Int. 33, 1293–1297 (2007)

    Article  Google Scholar 

  4. Y. Song, J. Zheng, M. Sun, S. Zhao, J. Mater. Sci.: Mater. Electron. 27, 4131–4138 (2016)

    Google Scholar 

  5. X. Chen, X. Wang, L. Li, S. Qi, J. Mater. Sci.: Mater. Electron. 27, 5607–5612 (2016)

    Google Scholar 

  6. W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G. Zou, J. Magn. Magn. Mater. 316, 54–58 (2007)

    Article  Google Scholar 

  7. J. Zhang, L. Wang, Q. Zhang, J. Mater. Sci.: Mater. Electron. 26, 2538–2543 (2015)

    Google Scholar 

  8. J. Wei, J. Liu, S. Li, J. Magn. Magn. Mater. 312, 414–417 (2007)

    Article  Google Scholar 

  9. J.B. Kim, S.K. Lee, C.G. Kim, Compos. Sci. Technol. 68, 2909–2916 (2008)

    Article  Google Scholar 

  10. M. Najim, P. Smitha, V. Agarwala, D. Singh, J. Mater. Sci.: Mater. Electron. 26, 7367–7377 (2015)

    Google Scholar 

  11. F. Nanni, P. Travaglia, M. Valentini, Compos. Sci. Technol. 69, 485–490 (2009)

    Article  Google Scholar 

  12. Y. Yang, S. Qi, J. Wang, J. Alloy. Compd. 520, 114–121 (2012)

    Article  Google Scholar 

  13. A.M. Gaman, M.C. Rezende, C.C. Dantas, J. Magn. Magn. Mater. 323, 2782–2785 (2011)

    Article  Google Scholar 

  14. J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang, S. Wang, H. Zhao, Y. Sui, X. Zhou, W. Zhao, Y. Leng, H. Zhao, H. Chen, X. Qi, Mater. Sci. Eng. B 175, 56–59 (2010)

    Article  Google Scholar 

  15. G. Shen, M. Xu, Z. Xu, Mater. Chem. Phys. 105, 268–272 (2007)

    Article  Google Scholar 

  16. Y. Fan, H. Yang, M. Li, G. Zou, Mater. Chem. Phys. 115, 696–698 (2009)

    Article  Google Scholar 

  17. H. Zhu, H. Lin, H. Guo, L. Yu, Mater. Sci. Eng. B 138, 101–104 (2007)

    Article  Google Scholar 

  18. X. Tang, K.A. Hu, Mater. Sci. Eng. B 139, 119–123 (2007)

    Article  Google Scholar 

  19. C. Wei, X. Shen, F. Song, Y. Zhu, Y. Wang, Mater. Des. 35, 363–368 (2012)

    Article  Google Scholar 

  20. G. Liu, L. Wang, G. Chen, S. Hua, C. Ge, H. Zhang, R. Wu, J. Alloy. Compd. 514, 183–188 (2012)

    Article  Google Scholar 

  21. Y. Rui-gang, J. Magn. Magn. Mater. 323, 1805–1810 (2011)

    Article  Google Scholar 

  22. W. Yang, Y. Fu, A. Xia, K. Zhang, Z. Wu, J. Alloy. Compd. 518, 6–10 (2012)

    Article  Google Scholar 

  23. E. Aghajari, S. Morady, M.H.N. Fmili, S.E. Zakiyan, A. Golbang, Iran. J. Polym Sci. Technol. 27(3), 193–201 (2014)

    Google Scholar 

  24. Y. Liu, Z. Zhang, S. Xiao, C. Qiang, L. Tian, J. Xu, Appl. Surf. Sci. 257, 7678–7683 (2011)

    Article  Google Scholar 

  25. Z. Tadmor, C.G. Gogos, “Principles of Polymer Processing”, 2nd edn (Chapter 7), pp. 322–408 (2006)

  26. A.A. Al-Ghamdi, Farid El-Tantawy. Compos.: Part A 41, 1693–1701 (2010)

    Article  Google Scholar 

  27. D.D.L. Chung, Carbon 39, 279–285 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Heidari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, B., Ansari, M., Hoseinabadi, A. et al. The effect of ZnO, Fe3O4 and graphene oxide nanostructures on the microwave absorbing properties of polystyrene composites. J Mater Sci: Mater Electron 28, 1028–1037 (2017). https://doi.org/10.1007/s10854-016-5625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5625-8

Keywords

Navigation