Skip to main content

Advertisement

Log in

Titania sensitized with SPADNS dye for dye sensitized solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of anatase TiO2 nanoparticle with diameter about 25 nm is carried out by using chemical method and powder of TiO2 nanoparticle is pasted on fluorine doped tin oxide (FTO) coated glass by doctor blade. New organic SPADNS dye (C16H9N2Na3O11S3) is used first time to make the dye-sensitized solar cells (DSSC). Cell were constructed by using SPADNS dye loaded wide band gap anatase TiO2 nanoparticle on FTO coated glass as photo-anode, polyiodide as electrolyte, and platinum coated FTO as counter electrode. SPADNS dye was made from organic reagent which is low cost and easy available in market. Better adsorption of SPADNS dye on anatase TiO2 film is due to porous nature of TiO2. This better adsorption gives more transportation of electron from dye to TiO2 which increase the efficiency of solar cell. Although SPADNS dye is the first experiment with TiO2 nanoparticle for DSSC, it gives photocurrent (short-circuit current density) 1.04 mA/cm2, open-circuit voltage 0.59 V, with 0.9 % efficiency under 10 mW/m2 LED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 7371–7740 (1991)

    Google Scholar 

  2. K.G. Deepa, P. Lekha, S. Sindhu, Sol. Energy 86, 326–330 (2012)

    Article  Google Scholar 

  3. A. Ranga Rao, V. Dutta, Nanotechnology 19, 44 (2008)

    Article  Google Scholar 

  4. J. Li, X. Chen, N. Ai, J. Hao, Q. Chen, S. Strauf, Y. Shi, Chem. Phys. Lett. 514, 141–145 (2011)

    Article  Google Scholar 

  5. H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N. Park, Nano Lett. 13(6), 2412–2417 (2013)

    Article  Google Scholar 

  6. B. Pradhan, S.K. Batabyal, A.J. Pal, Sol. Energy Mater. Sol. Cells 91, 769–773 (2007)

    Article  Google Scholar 

  7. R.S. Devan, R.A. Patil, J.-H. Lin, Y.-R. Ma, Adv. Funct. Mater. 22, 3326–3370 (2012)

    Article  Google Scholar 

  8. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)

    Article  Google Scholar 

  9. C.Y. Jiang, X.W. Sun, K.W. Tan, G.Q. Lo, A.K.K. Kyaw, D.L. Kwong, Appl. Phys. Lett. 92, 143101 (2008)

    Article  Google Scholar 

  10. J.H. Park, T.-W. Lee, M.G. Kang, Chem. Commun. 25, 2867–2869 (2008)

    Article  Google Scholar 

  11. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)

    Article  Google Scholar 

  12. R.J. Stirn, Y.C.M. Yeh, Appl. Phys. Lett. 27, 95 (1975)

    Article  Google Scholar 

  13. D.E. Scaife, Sol. Energy 25, 41–54 (1980)

    Article  Google Scholar 

  14. M.A. Butler, D.S. Ginley, J. Mater. Sci. 15, 1–19 (1980)

    Article  Google Scholar 

  15. S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, C. Kim, Chem. Commun. 46, 4887–4889 (2007)

    Article  Google Scholar 

  16. N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki, K. Hara, J. Am. Chem. Soc. 128, 14256–14257 (2006)

    Article  Google Scholar 

  17. H. Choi, C. Baik, S.O. Kang, J. Ko, M.-S. Kang, Mdk Nazeeruddin, M. Gratzel, Angew. Chem. Int. Ed. 47, 327–330 (2008)

    Article  Google Scholar 

  18. B. Lim, G.Y. Margulis, J.-H. Yum, E.L. Unger, B.E. Hardin, M. Gratzel, M.D. McGehee, A. Sellinger, Org. Lett. 15(4), 784–787 (2013)

    Article  Google Scholar 

  19. N.A. Ludin, A.M. Al-Alwani Mahmoud, A.B. Mohamad, A.A.H. Kadhum, K. Sopian, N.S.A. Karim, Renew. Sustain. Energy Rev. 31, 386–396 (2014)

    Article  Google Scholar 

  20. J. Gong, J. Liang, K. Sumathy, Renew. Sustain. Energy Rev. 16, 5848–5860 (2012)

    Article  Google Scholar 

  21. Z. She, Y. Cheng, L. Zhang, X. Li, D. Wu, Q. Guo, J. Lan, R. Wang, J. You, ACS Appl. Mater. Interfaces 7, 27831–27837 (2015)

    Article  Google Scholar 

  22. C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, K.-C. Ho, Angew. Chem. 118, 5954–5957 (2006)

    Article  Google Scholar 

  23. A. Mishra, M.K.R. Fischer, P. Bauerle, Angew. Chem. Int. Ed. 48, 2474–2499 (2008)

    Article  Google Scholar 

  24. K. Schilling, B. Bradford, D. Castelli, E. Dufour, J.F. Nash, W. Pape, S. Schulte, I. Tooley, J. van den Bosch, F. Schellauf, Photochem. Photobiol. Sci. 9, 495–509 (2010)

    Article  Google Scholar 

  25. N.A. Monteiro-Riviere, K. Wiench, R. Landsiedel, S. Schulte, A.O. Inman, J.E. Riviere, Toxicol. Sci. 123, 264–280 (2011)

    Article  Google Scholar 

  26. S.-J. Kim, M.-C. Kim, D.-H. Kwak, D.-M. Kim, G.-H. Lee, H.-S. Choe, K.-W. Park, J. Power Sour. 304, 119–127 (2016)

    Article  Google Scholar 

  27. D. Deng, M.G. Kim, J.Y. Lee, J. Cho, Energy Environ. Sci. 2, 818–837 (2009)

    Article  Google Scholar 

  28. L. Zhenga, C. Wangc, Y. Donga, H. Biana, T.F. Hung, J. Lud, Y. Yang, Appl. Surf. Sci. 362, 399–405 (2016)

    Article  Google Scholar 

  29. Q. Wang, Z. Wen, J. Li, Adv. Funct. Mater. 16, 2141–2146 (2006)

    Article  Google Scholar 

  30. D.P. Kumar, N.L. Reddy, B. Srinivas, V. Durgakumari, V. Roddatis, O. Bondarchuk, M. Karthik, Y. Ikuma, M.V. Shankar, Sol. Energy Mater. Sol. Cells 146, 63–71 (2016)

    Article  Google Scholar 

  31. B. Wu, D. Liu, S. Mubeen, T.T. Chuong, M. Moskovits, G.D. Stucky, J. Am. Chem. Soc. 138, 1114–1117 (2016)

    Article  Google Scholar 

  32. P. Spinelli, B. Macco, M.A. Verschuuren, W.M.M. Kessels, A. Polman, Appl. Phys. Lett. 102, 233902 (2013)

    Article  Google Scholar 

  33. C.-W. Wang, J.-B. Chen, L.-Q. Wang, Y.-M. Kang, D.-S. Li, F. Zhou, Thin Solid Films 520, 5036–5041 (2012)

    Article  Google Scholar 

  34. J. Liang, G. Zhang, Appl. Mater. Interfaces 4, 6053–6061 (2012)

    Article  Google Scholar 

  35. Y.L. Xia, L.S. Lian, C.Q. Yun, Y.S. Zhuo, Chin. Sci. Bull. 55, 4–5 (2010)

    Google Scholar 

  36. M.B. Prasad, H.M. Pathan, Eur. Phys. J. D 68, 25 (2014)

    Article  Google Scholar 

  37. G. Ruani, C. Ancora, F. Corticelli, C. Dionigi, C. Rossi, Sol. Energy Mater. Sol. Cells 92, 537–542 (2008)

    Article  Google Scholar 

  38. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  Google Scholar 

  39. D. Sengupta, B. Mondal, K. Mukherjee, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 85–92 (2015)

    Article  Google Scholar 

  40. H.H.T. Vu, T.S. Atabaev, D.P. Cong, M.A. Hossain, D. Lee, N.N. Dinh, C.R. Cho, H.K. Kim, Y.H. Hwang, Electrochim. Acta 193, 166–171 (2016)

    Article  Google Scholar 

  41. R.S. Mane, W.J. Lee, H.M. Pathan, S.H. Han, J. Phys. Chem. B 109, 24254–24259 (2005)

    Article  Google Scholar 

  42. R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Compound, vol. 3 (Wiley, New York, 1998), pp. 170–230

    Google Scholar 

  43. Y. Liao, J. Hu, C. Zhu, Y. Liu, X. Chen, C. Chen, C. Zhong, J. Mol. Struct. 1108, 467–474 (2016)

    Article  Google Scholar 

  44. M. Gratzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145–153 (2003)

    Article  Google Scholar 

  45. U. Mehmood, I.A. Hussein, A.A. Ahmed, S. Ahmed, J. Photovolt 6, 2 (2016)

    Article  Google Scholar 

  46. L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, M. Grätzel, Adv. Mater. 17, 813–815 (2005)

    Article  Google Scholar 

  47. MdK Nazeeruddin, E. Baranoff, M. Gratzel, Sol. Energy 85, 1172–1178 (2011)

    Article  Google Scholar 

  48. V.K. Singh, B. Bhattacharya, S. Shukla, P.K. Singh, Mater. Technol. 49, 123–127 (2015)

    Google Scholar 

  49. A. Nawaz, R. Sharif, H.-W. Rhee, P.K. Singh, J. Ind. Eng. Chem. 33, 381–384 (2016)

    Article  Google Scholar 

  50. P.M. Jayaweera, T. Sanjeewa, K. Tennakone, Sol. Energy Mater. Sol. Cells 91, 944–950 (2007)

    Article  Google Scholar 

  51. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  52. X. Du, R. Fan, X. Wang, G. Yu, L. Qiang, P. Wang, S. Gao, Y. Yang, Cryst. Growth Des. 16, 1737–1745 (2016)

    Article  Google Scholar 

  53. Y.-S. Yen, J.-S. Ni, W.-I. Hung, C.-Y. Hsu, H.-H. Chou, J.-T. Lin, Appl. Mater. Interface 8, 6117–6126 (2016)

    Article  Google Scholar 

  54. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 126, 12218–12219 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Science and Technology (DST), Ministry of Science and Technology of India, for their financial support of this research under INSPIRE Faculty Award No. DST/INSPIRE Faculty Award/2013/IFA13-PH-63.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh S. Devan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didwal, P.N., Pawar, K.S., Chikate, P.R. et al. Titania sensitized with SPADNS dye for dye sensitized solar cell. J Mater Sci: Mater Electron 27, 12446–12451 (2016). https://doi.org/10.1007/s10854-016-5431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5431-3

Keywords

Navigation