Skip to main content
Log in

Statistically optimized synthesis of dyspersium tungstate nanoparticles as photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The parameters affecting the perticipation reaction for the production of dyspersium tungstate nanoparticles were optimized using the taguchi robust design. The parameters studied were the concentrations of dyspersium and tungstate solution, as well as the flow rate of the cation solution and temperature of the reactor, and the outcome under study was the dimensions of the percipitated nanoparticles. Analysis of variance (ANOVA) of the results proved that the flowrate of adding the cation solution (FZ) and the concentration of the solutions of both ions considerablly affect the outcome of the reaction. The synthesized dyspersium tungstate nanoparticles prepared under the optimized factors wereevaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and UV–Vis spectroscopy techniques. Furthermore, the as-synthsized dyspersium tungstate nanoparticles were used as efficient photocatalyst for the photocatalytic degradation of methylene blue under ultraviolet light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, S.A.S. Shandiz, F. Ahmadi, H. Batooli, Nat. Prod. Res. 28, 1964 (2014)

    Article  Google Scholar 

  2. S.M. Pourmortazavi, M. Taghdiri, V. Makari, M. Rahimi-Nasrabadi, Spectrochim. Acta, Part A 136, 1249 (2015)

    Article  Google Scholar 

  3. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776 (2015)

    Google Scholar 

  4. S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. Mater. Electron. 26, 6086 (2015)

    Article  Google Scholar 

  5. H.R. Naderi, M.R. Ganjali, P. Norouzi, Int. J. Electrochem. Sci. 11, 4267 (2016)

    Article  Google Scholar 

  6. H.A. Kermani, M. Hosseini, M. Dadmehr, M.R. Ganjali, Anal. Anal Bioanal Chem. 408, 4311 (2016)

    Article  Google Scholar 

  7. M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 26, 7745 (2015)

    Article  Google Scholar 

  8. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, Z. Rezvani, K. Adib, M.R. Ganjali, Mater. Manuf. Process. 30, 34 (2015)

    Article  Google Scholar 

  9. V.B. Mikhailik, H. Kraus, J. Phys. D Appl. Phys. 39, 1181 (2006)

    Article  Google Scholar 

  10. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 3240 (2016)

    Article  Google Scholar 

  11. F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, M.H. Daneshmand, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-016-5002-7

  12. H. Wang, J. Li, G. Jia, Z. You, F. Yang, Y. Wei, Y. Wang, Z. Zhu, X. Lu, C. Tu, J. Lumin. 126, 452 (2007)

    Article  Google Scholar 

  13. E.J. Anila, M.K. Jayaraj, J. Alloy. Compd. 504, 257 (2010)

    Article  Google Scholar 

  14. Y.B. Shin, J. Heo, J. Non-Cryst, Solids 256–257, 260 (1999)

    Google Scholar 

  15. J. Heo, J. Mater. Sci. Lett. 14, 1014 (1995)

    Article  Google Scholar 

  16. J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krنmer, C. Reinhard, H.U. Güdel, Opt. Mater. 27, 1111 (2005)

    Article  Google Scholar 

  17. W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, R. Lisiecki, Opt. Mater. 31, 1547 (2009)

    Article  Google Scholar 

  18. A.A. Kaminskii, H.J. Eichier, K. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, R. Balda, Appl. Opt. 38, 4533 (1999)

    Article  Google Scholar 

  19. F. Lei, B. Yan, J. Mater. Res. 26, 88 (2011)

    Article  Google Scholar 

  20. Z. Tang, L. Zhou, F. Wang, L. Zhou, Spectrochim. Acta, Part A 72, 348 (2009)

    Article  Google Scholar 

  21. A. Durairajan, D. Thangaraju, D. Balaji, S. MoorthyBabu, Opt. Mater. 35, 740 (2013)

    Article  Google Scholar 

  22. M.V. Nazarov, B.S. Tsukerblat, E.-J. Popovici, D.Y. Jeon, Phys. Lett. A 330, 291 (2004)

    Article  Google Scholar 

  23. A.M. El-Kamash, B. El-Gammal, A.A. El-Sayed, J. Hazard. Mater. 141, 719 (2007)

    Article  Google Scholar 

  24. P.A. Atanasov, A.O. Dikovska, J. Perriere, R.M. Defourneau, Thin Solid Films 515, 3052 (2007)

    Article  Google Scholar 

  25. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, J. Mol. Struct. 1074, 85 (2014)

    Article  Google Scholar 

  26. W. Liu, G. Qian, B. Zhang, L. Liu, H. Liu, Mater. Let. 178, 15 (2016)

    Article  Google Scholar 

  27. W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, J. Hazard. Mater. 173, 194 (2010)

    Article  Google Scholar 

  28. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 498, 113 (2010)

    Article  Google Scholar 

  29. U.M. Garcia-Perez, A. Martinez-de la Cruz, J. Peral, Electrochim. Acta 81, 227 (2012)

    Article  Google Scholar 

  30. Y. Tian, L. Zhang, J. Zhang, J. Alloy. Compd. 537, 24 (2012)

    Article  Google Scholar 

  31. N.C.T. Martinsa, J. Ângeloa, A.V. Girãob, T. Trindadeb, L. Andradea, A. Mendes, Appl. Appl. B Environ 193, 67 (2016)

    Article  Google Scholar 

  32. F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, M.H. Daneshmand, J. Mater. Sci. Mater. Electron. DOI 10.1007/s10854-016-5002-7

  33. Y. Fazli, S.M. Pourmortazavi, I. Kohsari, M.S. Karimi, M. Tajdari, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4683-2

    Google Scholar 

  34. M. Rahimi-Nasarabadi, F. Ahmadi, S. Hamdi, N. Eslami, K. Didehban, M.R. Ganjali, J. Mol. Liq. 216, 814 (2016)

    Article  Google Scholar 

  35. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Int. J. Refract. Met. Hard Mater. 51, 29 (2015)

    Article  Google Scholar 

  36. M. Rahimi-Nasrabadi, J. NanoStructures 4, 211 (2014)

    Google Scholar 

  37. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, S.S. Hajimirsadeghi, J. Disper. Sci. Technol. 33, 254 (2012)

    Article  Google Scholar 

  38. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, M.M. Zahedi, Mater. Sci. Semicond. Process. 16, 131 (2013)

    Article  Google Scholar 

  39. S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, I. Kohsari, Met. Organ. Nano-Met. Chemi. 42, 746 (2012)

    Google Scholar 

  40. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, S.S. Hajimirsadeghi, M.M. Zahedi, Open Chem. 11, 1393 (2013)

    Article  Google Scholar 

  41. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, S.S. Hajimirsadeghi, J. Inorganic Organomet. Polym. Mater. 24, 333 (2014)

    Article  Google Scholar 

  42. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, S.S. Hajimirsadeghi, M.M. Zahedi, J. Mol. Struct. 1047, 31 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Rahimi-Nasrabadi or Seied Mahdi Pourmortazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi-Nasrabadi, M., Pourmortazavi, S.M., Ganjali, M.R. et al. Statistically optimized synthesis of dyspersium tungstate nanoparticles as photocatalyst. J Mater Sci: Mater Electron 27, 12860–12868 (2016). https://doi.org/10.1007/s10854-016-5421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5421-5

Keywords

Navigation