Skip to main content
Log in

Role of hexamethylenetetramine concentration on structural, morphological, optical and electrical properties of hydrothermally grown zinc oxide nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods were grown on the glass substrates using hydrothermal method. Influence of hexamethylenetetramine (HMTA) concentration on the morphological, structural, optical and electrical properties of ZnO was investigated. Increasing HMTA concentration produces dense growth of nanorods and decreases the diameter from ~450 to ~150 nm and also modified the hexagonal shape of ZnO nanorods to circular shape. X-ray diffraction spectra revealed that the synthesized ZnO nanorod exhibits wurtzite structure. Shifting of absorbance edge from 3.30 to 3.36 eV with increasing concentration of HMTA was observed in the UV–Vis spectra. Photoluminescence studies showed the presence of defect related peaks such as zinc interstitial and oxygen vacancies. The observed blue shift in UV emission peak from 387 to 361 nm in photoluminescence spectrum also confirmed the decrease in the size of nanorods. Electrical studies showed the increase in the resistance with the increase in the HMTA concentration from 1.17 to 16.9 kΩ due to dense and reduced size of nanorod networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.C. Chen, N. Ye, C.F. Yu, T. Fan, J. Ceram. Process. Res. 15, 102–106 (2014)

    Google Scholar 

  2. H. Huang, G. Fang, X. Mo, H. Long, L. Yuan, B. Dong, X. Meng, X. Zhao, IEEE Electr. Device Lett. 30, 1063–1065 (2009)

    Article  Google Scholar 

  3. C.X. Xu, X.W. Sun, Appl. Phys. Lett. 83, 3806–3808 (2003)

    Article  Google Scholar 

  4. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2009)

    Article  Google Scholar 

  5. E. Guillen, L.M. Peter, J.A. Anta, J. Phys. Chem. C 115, 22622–22632 (2011)

    Article  Google Scholar 

  6. O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J.M. Wessels, Nano Lett. 3, 1097–1101 (2003)

    Article  Google Scholar 

  7. A. Kathalingam, V. Senthilkumar, S. Valanarasu, J.-K. Rhee, Semicond. Sci. Technol. 27, 105006 (2012)

    Article  Google Scholar 

  8. Y. Lu, L. Wang, D. Wang, T. Xie, L. Chen, Y. Lin, Mater. Chem. Phys. 129, 281–287 (2011)

    Article  Google Scholar 

  9. M. Rezapour, N. Talebian, Mater. Chem. Phys. 129, 249–255 (2011)

    Article  Google Scholar 

  10. J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, S. Wu, Cryst. Growth Des. 9, 3532–3537 (2009)

    Article  Google Scholar 

  11. S. Tian, F. Yang, D. Zeng, C. Xie, J. Phys. Chem. C 116, 10586–10591 (2012)

    Article  Google Scholar 

  12. D. Valerini, A. Creti, A.P. Caricato, M. Lomascolo, R. Rella, M. Martino, Sens. Actuators B Chem. 145, 167–173 (2010)

    Article  Google Scholar 

  13. N.H. Al-Hardan, M.J. Abdullah, A.A. Aziz, Int. J. Hydrog. Energy 35, 4428–4434 (2010)

    Article  Google Scholar 

  14. P. Singh, A. Kaushal, D. Kaur, J. Alloys Compd. 471, 11–15 (2009)

    Article  Google Scholar 

  15. D. Barreca, D. Bekermann, E. Comini, A. Devi, R.A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, E. Tondello, Sens. Actuators B Chem. 149, 1–7 (2010)

    Article  Google Scholar 

  16. C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan, S. Li, Mater. Lett. 60, 1828–1832 (2006)

    Article  Google Scholar 

  17. Y. Ding, Y. Liu, K.C. Pradel, Y. Bando, N. Fukata, Z.L. Wang, Micron 78, 67–72 (2015)

    Article  Google Scholar 

  18. R. Wahab, Y.-S. Kim, H.-S. Shin, Curr. Appl. Phys. 11, 334–340 (2011)

    Article  Google Scholar 

  19. H.-U. Lee, K. Ahn, S.-J. Lee, J.-P. Kim, H.-G. Kim, S.-Y. Jeong, C.-R. Cho, Appl. Phys. Lett. 98, 193114 (2011)

    Article  Google Scholar 

  20. C.-Y. Su, A.M. Goforth, M.D. Smith, P.J. Pellechia, H.-C. zur Loye, J. Am. Chem. Soc. 126, 3576–3586 (2004)

    Article  Google Scholar 

  21. J. Chang, E. Waclawik, Cryst. Eng. Commun. 14, 4041–4048 (2012)

    Article  Google Scholar 

  22. J. Lian, Y. Liang, F.-L. Kwong, Z. Ding, D.H.L. Ng, Mater. Lett. 66, 318–320 (2012)

    Article  Google Scholar 

  23. K.G. Yim, M.S. Kim, S. Kim, J.Y. Leem, G. Nam, S.M. Jeon, D.Y. Lee, J.S. Kim, J.I. Lee, J. Korean Chem. Soc. 60, 1605–1610 (2012)

    Google Scholar 

  24. Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, D. Shen, X. Fan, J. Phys. Chem. B 110, 20263–20267 (2006)

    Article  Google Scholar 

  25. C.P. Burke Govey, N.O.V. Plank, J. Vac. Sci. Technol. B 31, 06F101 (2013)

    Article  Google Scholar 

  26. M. Navaneethan, J. Archana, M. Arivanandhan, Y. Hayakawa, Chem. Eng. J. 213, 70–77 (2012)

    Article  Google Scholar 

  27. M. Navaneethan, K.D. Nisha, S. Ponusamy, C. Muthamizhchelvan, Mater. Chem. Phys. 117, 443–447 (2009)

    Article  Google Scholar 

  28. K. Nose, H. Fujita, T. Omata, S. Matsuo, H. Nakamura, H. Maeda, J. Lumin. 126, 21–26 (2007)

    Article  Google Scholar 

  29. G.N. Narayanan, R. Ganesh Sankar, A. Karthigeyan, Thin Solid Films 598, 39–45 (2016)

    Article  Google Scholar 

  30. M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158–3168 (1996)

    Article  Google Scholar 

  31. H.-W. Chen, H.-W. Yang, H.-M. He, Y.-M. Lee, J. Phys. D. Appl. Phys. 49, 025306 (2016)

    Article  Google Scholar 

  32. Q. Yang, H. Cai, Z. Hu, Z. Duan, X. Yang, J. Sun, N. Xu, J. Wu, Nanoscale Res. Lett. 9, 31 (2014)

    Article  Google Scholar 

  33. M. Tiemann, F. Marlow, J. Hartikainen, O. Weiss, M. Linder, J. Phys. Chem. C 112, 1463–1467 (2008)

    Article  Google Scholar 

  34. J. Qiu, X. Li, W. He, S.-J. Park, H.-K. Kim, Y.-H. Hwang, J.-H. Lee, Yang-Do Kim. Nanotechnology 20, 155603 (2009)

    Article  Google Scholar 

  35. S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Article  Google Scholar 

  36. V. Strano, R.G. Urso, M. Scuderi, K.O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, J. Phys. Chem. C 118, 28189–28195 (2014)

    Article  Google Scholar 

  37. R. Wahab, Y.-S. Kim, K. Lee, H.-S. Shin, J. Mater. Sci. 45, 2967–2973 (2010)

    Article  Google Scholar 

  38. S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Bremond, V. Consonni, J. Phys. Chem. C 117, 20738–20745 (2013)

    Article  Google Scholar 

  39. M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials 3, 2643–2667 (2010)

    Article  Google Scholar 

  40. R. Yousefi, B. Kamaluddin, J. Alloys Compd. 479, 11–14 (2009)

    Article  Google Scholar 

  41. X.D. Wang, Y. Ding, C.J. Summers, Z.L. Wang, J. Phys. Chem. B 108, 8773–8777 (2004)

    Article  Google Scholar 

  42. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III, Phys. Status Solidi B. 252, 1700–1710 (2015)

    Article  Google Scholar 

  43. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 4, 4596–4604 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors thank SRM University, Kattankulathur, Kanchipuram (Dt.) for the award of SRM fellowship to carry out the research work. The authors are grateful to Prof. K. Ramamurthi for his valuable suggestions during the course of this work. The authors thank Prof. John Thiruvadigal for extending the experimental facilities created under DST—FIST (DST–FIST—SR/FST/PSI-155/2010) and Nanotechnology Research Center, SRM University, Kattankulathur-603 203 for extending the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthigeyan Annamalai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, G.N., Annamalai, K. Role of hexamethylenetetramine concentration on structural, morphological, optical and electrical properties of hydrothermally grown zinc oxide nanorods. J Mater Sci: Mater Electron 27, 12209–12215 (2016). https://doi.org/10.1007/s10854-016-5376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5376-6

Keywords

Navigation