Skip to main content
Log in

The effects of Polyvinylpyrrolidone on the Au sizes, dispersion and enhancement of absorption spectra of the nanoparticles Au/TiO2 solutions for application in plasmonic solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The nanoparticles Au/TiO2 embedded system plays a very important role in the plasmonic solar cell. Recently the scientists have focused their research both on the theoretical and technological problems. One of research orientations is focused on optimizing the characterizations of Au/TiO2 nanoparticles (NPs) for increasing efficiency of the plasmonic solar cell. This paper outlines the synthesis methods and some technological developments for preparation of the Au(10 %)/TiO2 and Au(40 %)/TiO2 solutions in the presence of polyvinylpyrrolidone (PVP) with different reaction rates of sodium borohydride adding into chemical reaction to control the Au NPs sizes, densities and dispersion of Au NPs being in Au/TiO2 NPs solution aiming to make the suitable Au/TiO2 thin film for application in plasmonic solar cell. The morphological, structural, absorption spectra of the Au/TiO2 NPs solutions in the presence of PVP and without PVP are investigated by the HRTEM, EDX, XRD and UV–Vis spectroscopy techniques. Depending on the technological conditions, in presence of PVP, the synthesized Au NPs being in Au/TiO2 solutions have their sizes are in range of 3–4 nm and of 8–10 nm with uniformly dispersed for the cases of slow reaction rate, and fast reaction rate, respectively, meanwhile the results of Au NPs synthesized without PVP which has different Au sizes, not uniformly dispersed. Based on experiment results the role and effects of PVP on controllable Au sizes, NPs densities and on the enhancement of the absorption spectra from peaks of 600 nm to the violet range are investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 335, 737 (1991)

    Article  Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001)

    Article  Google Scholar 

  3. T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Sol. Energy 85, 1580 (2011)

    Article  Google Scholar 

  4. A.J. Nozik, Quantum dot solar cells (preprint) center for basic sciences, national renewable energy laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, October 2001. NREL/CP-590-31011 (2001)

  5. H.A. Atwater, A. Polman, Nat. Mater. 9, 865 (2010)

    Article  Google Scholar 

  6. V.H. Nguyen, B.H. Nguyen, Visible light responsive titania-based nanostructures for photocatalytic, photovoltaic and photoelectrochemical applications. Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 023001 (2012)

    Article  Google Scholar 

  7. V.V. Cat, N.T. Thuy, T.V. Viet, P.A. Tuan, D.K. An, Au/TiO 2 plasmonic structural solar cell: design, technological developments and several obtained experiment results. Proceedings of the 3th CASEAN13, 10–15 November 2013, Phnom Penh, Cambodia, pp. 191–201

  8. H. Xiaoping (m. eng. cisri), Influence of Au nanoparticles on the properties of TiO 2 films for use in dye-sensitized solar cell. Thesis submitted for the degree of doctor of philosophy department of Materials Science and Engineering National University of Singapore (2008)

  9. Y.-H. Su, Y.-F. Ke1, S.-L. Cai, Q.-Y. Yao, Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci. Appl. 1, e14 (2012). doi:10.1038/lsa.2012.14_2012 CIOMP

  10. K.R. Catchpole, A. Polman, Plasmon. Sol. Cells 16, 21793 (2008)

    Google Scholar 

  11. S.A. Mair, Plasmonics-Fundamentals and Applications 2007 Springer Science, ISBN 0-387-33150-6 (book)

  12. I. Thomann, B.A. Pinaud, Z. Chen, B.M. Clemens, T.F. Jaramillo, M.L. Brongersma, Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440–3446 (2011). doi:10.1021/nl201908s

    Article  Google Scholar 

  13. K. Vanherck, T. Verbiest, I. Vankelecom, Comparison of two synthesis routes to obtain gold nanoparticles in polyimide. J. Phys. Chem. C 116, 115–125 (2012)

    Article  Google Scholar 

  14. S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, M. Moskovits, Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 11, 5548–5552 (2011)

    Article  Google Scholar 

  15. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide, Jacs Articles Published on Web 01/12/2008, pp. 1–5

  16. R. Sardar, J.S. Shumaker-Parry, Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. JACS J. Am. Chem. Soc. 133, 8179–8190 (2011)

    Article  Google Scholar 

  17. D. Malina, A. Sobczak-Kupiec, Z. Wzorek, Z. Kowalski, Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomater. Biostruct. 7(4), 1527–1534 (2012)

    Google Scholar 

  18. A. Rawat, H.K. Mahavar, A. Tanwar, P.J. Singh, Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films. Bull. Mater. Sci. 37(2), 273–279 (2014)

    Article  Google Scholar 

  19. M.H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, L. Samuelson, Gold nanoparticles: production, reshaping, and thermal charging. J. Nanoparticle Res. 1, 243–251 (1999)

    Article  Google Scholar 

  20. M. Murawska, A. Skrzypczak, M. Kozak, Structure and morphology of gold nanoparticles in solution studied by TEM, SAXS and UV–Vis. 9th National symposium of synchrotron radiation users, Warsaw, 26–27 September 2011, vol. 121 (2012), pp. 888–892

  21. S. Link, M.B. Mohamed, M.A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073–3077 (1999)

    Article  Google Scholar 

  22. K.A. Dao, T.T. Nguyen, T.M.H. Nguyen, D.T. Nguyen, Comparison of some morphological and absorption properties of the nanoparticles Au/TiO2 embedded films prepared by different technologies on the substrates for application in the plasmonic solar cell. (IOP) Adv. Nat. Sci. Nanosci. Nanotechnol. 6(1), 015018 (2015). doi:10.1088/2043-6262/6/1/015018

    Article  Google Scholar 

  23. N.D. Thien, N.T. Thanh, N.T. Thuy, L.V. Vu, D.K. An, Some properties of TiO2/Au nanocomposite thin films produced by spincoating method for application in plasmonic solar cells. VNU J. Sci. Math. Phys. 31(2), 28–35 (2015)

    Google Scholar 

  24. F. Haaf, A. Sanner, F. Straub, Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym. J. 17(1), 143–152 (1985)

    Article  Google Scholar 

  25. M. Jukić, I. Sviben, Z. Zorić, S. Milardović, Effect of polyvinylpyrrolidone on the formation AgBr grains in gelatine media. Croat. Chem. Acta 85(3), 269–276 (2012)

    Article  Google Scholar 

  26. H. Sun et al., Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. J. Am. Chem. Soc. 135, 9099–9110 (2013)

    Article  Google Scholar 

  27. A. Pal, S. Shah, S. Devi, Synthesis of Au, Ag and Au-Ag alloy nanoparticles in aqueous polymer solution. Colloids Surf. A 302, 51–57 (2007)

    Article  Google Scholar 

  28. M.G. Spirin, S.B. Brichkin, V.F. Razumov, Synthesis and stabilization gold nanoparticles in reverse micelles of aerosol OT and triton X-100. Colloid J. 67, 485–490 (2005)

    Article  Google Scholar 

  29. H. Wang et al., Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 94, 449–453 (2005)

    Article  Google Scholar 

  30. L. Saravanan et al., Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticle. Nanomater. nanotechnol. 1, 42–48 (2011)

    Article  Google Scholar 

  31. MicroemulsionsAn Introduction to Properties and Applications; Edited by Dr. Reza Najjar; ISBN 978-953-51-0247-2; Hard cover, p. 250; Publisher InTech

  32. N.T.K. Thanh, L.A.W. Green, Functionalisation of nanoparticles for biomedical applications. Nano Today 5, 213–230 (2010)

    Article  Google Scholar 

  33. H.N. Verma, P. Singh, R.M. Chavan, Gold nanoparticle: synthesis and characterization. Veterinary World 7(2), 72–77 (2014). doi:10.14202/vetworld.2014.72-77

    Article  Google Scholar 

  34. M. Behera, S. Ram, Spectroscopy-based study on the interaction between gold nanoparticle and poly(vinylpyrrolidone) molecules in a non-hydrocolloid. Int. Nano Lett. 3, 17 (2013)

    Article  Google Scholar 

  35. K.L. Kelly et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  36. X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013)

    Article  Google Scholar 

  37. K.S. Kunmar, V.B. Kumar, P. Paik, Recent advancement in functional core-shell nanoparticles of polymewrs: symthesis, phsical properties, and applications in medical biotechnology. J. Nanoparticles (Review Article), 2013, Article ID 672059, 1–24 (2013)

Download references

Acknowledgements

The authors would like to express their gratitude to the NAFOSTED for financial funding the basic research project with code 103.02-2013.47 in period from 2014 to 2017, also many thanks to the supports of Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khac An Dao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Nguyen, T.T., Pham, H. et al. The effects of Polyvinylpyrrolidone on the Au sizes, dispersion and enhancement of absorption spectra of the nanoparticles Au/TiO2 solutions for application in plasmonic solar cell. J Mater Sci: Mater Electron 27, 11379–11389 (2016). https://doi.org/10.1007/s10854-016-5263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5263-1

Keywords

Navigation