Skip to main content
Log in

Ti doped hematite thin film photoanode with enhanced photoelectrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ti-doped Fe2O3 thin films were prepared on fluorine-doped SnO2 substrate as visible light active photoelectrochemical anodes. The fabricated films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray energy dispersive spectroscopy and X-ray photoelectron spectroscopy (XPS). XRD data showed all films exhibited rhombohedral hematite phase, and the cell parameters showed that Titanium atoms substituted Fe atoms in the hematite lattice. AFM demonstrated that Ti doping could decrease the particle size on the surface compared with pure hematite. XPS results presented that Ti atom concentration was about 2.23 % in the doped film surface. The incident photon to electron conversion efficiency of Ti doped α-Fe2O3 film reached 23 % at 400 nm under 0.30 V bias versus AgCl in 1 M NaOH, which was nearly four times than that of undoped film. Titanium atoms in α-Fe2O3 lattice could increase the conductivity of hematite film. And excited electrons and holes in the bulk film could be separated more efficiently, rather than recombining with each other rapidly as that in pure hematite, which ultimately prolonged the life of electrons and holes and obtained the high efficiency Fe2O3 photo anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fujishima, Nature 238, 37 (1972)

    Article  Google Scholar 

  2. K.L. Hardee, A.J. Bard, J. Electrochem. Soc. 123, 1024 (1976)

    Article  Google Scholar 

  3. S.U.M. Khan, J. Akikusa, J. Phys. Chem. B 103, 7184 (1999)

    Article  Google Scholar 

  4. Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. Xie, Electrochim. Acta 129, 358 (2014)

    Article  Google Scholar 

  5. P. Zhang, A. Kleiman-Shwarsctein, Y.-S. Hu, J. Lefton, S. Sharma, A.J. Forman, E. McFarland, Energ. Environ. Sci. 4, 1020 (2011)

    Google Scholar 

  6. Z. Fu, T. Jiang, L. Zhang, B. Liu, D. Wang, L. Wang, T. Xie, J. Mater. Chem. A 2, 13705 (2014)

    Article  Google Scholar 

  7. S. Park, H.J. Kim, C.W. Lee, H.J. Song, S.S. Shin, S.W. Seo, H.K. Park, S. Lee, D.-W. Kim, K.S. Hong, Int. J. Hydrogen. Energ 39, 16459 (2014)

    Article  Google Scholar 

  8. H.K. Dunn, J.M. Feckl, A. Mueller, D. Fattakhova-Rohlfing, S.G. Morehead, J. Roos, L.M. Peter, C. Scheu, T. Bein, Phys. Chem. Chem. Phys. 16, 24610 (2014)

    Article  Google Scholar 

  9. Y. Ling, Y. Li, Part. Part. Syst. Char. 31, 1113 (2014)

    Article  Google Scholar 

  10. A. Duret, M. Grätzel, J. Phys. Chem. B 109, 17184 (2005)

    Article  Google Scholar 

  11. J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, N. Savvides, J. Phys. Chem. C 111, 16477 (2007)

    Article  Google Scholar 

  12. N.T. Hahn, H. Ye, D.W. Flaherty, A.J. Bard, C.B. Mullins, ACS Nano 4, 1977 (2010)

    Article  Google Scholar 

  13. X. Lian, X. Yang, S. Liu, Y. Xu, C. Jiang, J. Chen, R. Wang, Appl. Surf. Sci. 258, 2307 (2012)

    Article  Google Scholar 

  14. J. Deng, J. Zhong, A. Pu, D. Zhang, M. Li, X. Sun, S.-T. Lee, J. Appl. Phys. 112, 084312 (2012)

    Article  Google Scholar 

  15. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel, J. Am. Chem. Soc. 132, 7436 (2010)

    Article  Google Scholar 

  16. M. Aronniemi, J. Lahtinen, P. Hautojärvi, Surf. Interface Anal. 36, 1004 (2004)

    Article  Google Scholar 

  17. D.W. Sheel, J. Lewis, A. Robinson, H.M. Yates, ECS Trans. 25, 1081 (2009)

    Article  Google Scholar 

  18. M.R. Dhananjeyan, E. Mielczarski, K.R. Thampi, P. Buffat, M. Bensimon, A. Kulik, J. Mielczarski, J. Kiwi, J. Phys. Chem. B 105, 12046 (2001)

    Article  Google Scholar 

  19. N. Hellgren, M.P. Johansson, E. Broitman, L. Hultman, J.-E. Sundgren, Phys. Rev. B 59, 5162 (1999)

    Article  Google Scholar 

  20. R. Lopez, R. Gomez, M.E. Llanos, Catal. Today 148, 103 (2009)

    Article  Google Scholar 

  21. J. Tauc, Science 158, 1543 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by NSFC (61505018), Chongqing Education government (KJ1401113, Ycstc2015nc4002), and Science Projects of Chongqing University of Arts and Sciences (R2013CJ08 and Y2015XC27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Cheng, J., Hu, R. et al. Ti doped hematite thin film photoanode with enhanced photoelectrochemical properties. J Mater Sci: Mater Electron 27, 8935–8940 (2016). https://doi.org/10.1007/s10854-016-4923-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4923-5

Keywords

Navigation