Skip to main content
Log in

A study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, synthesis of CoMn2O4 electrode material through a newly adopted hydrothermal method was achieved and reported. The synthesized material was subjected to various physico-chemical properties to analyze the suitability of the material for the super capacitor applications. The structure of the title compound was confirmed by powder X-ray diffraction studies. Fourier transform infrared spectroscopy confirms the various functional groups associated with the material. Optical and surface analysis was studied by using UV–Visible spectroscopy and field emission scanning electron microscopy. The electrochemical properties of modified electrode CoMn2O4 were investigated using cyclic voltammetry, galvanostatic charge–discharge, cycle stability and electrochemical impedance spectroscopy in electrochemical workstation. Based on the electrochemical properties, the electrode material reveals the ideal capacitance behaviour with high capacitance of 700 F/g at the sweep rate of 5 mV/s in 3 M KCL aqueous electrolyte solution. The remarkable electrochemical performance undoubtedly makes CoMn2O4 as the promising material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Ponarulselvam, C. Panneerselvam, K. Murugan, N. Aarthi, K. Kalimuthu, S. Thankgamani, Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed. 2, 574 (2012)

    Article  Google Scholar 

  2. M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647 (1998)

    Article  Google Scholar 

  3. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996)

    Article  Google Scholar 

  4. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 5601, 2176 (2002)

    Article  Google Scholar 

  5. D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Forming electrical networks in three dimensions by self-assembly. Science 289, 1170 (2000)

    Article  Google Scholar 

  6. C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28 (2010)

    Article  Google Scholar 

  7. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822 (2010)

    Article  Google Scholar 

  8. G.-R. Li, Z.-P. Feng, Y.-N. Ou, D. Wu, R. Fu, Y.-X. Tong, Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26, 2209 (2010)

    Article  Google Scholar 

  9. P. Ragupathy, H.N. Vasan, N. Munichandraiah, Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies. J. Electrochem. Soc. 155, 34 (2008)

    Article  Google Scholar 

  10. L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806 (2012)

    Article  Google Scholar 

  11. C.D. Lokhande, D.P. Dubal, O.-S. Joo, Metal oxide thin film based Supercapacitors. Curr. Appl. Phys. 11, 255 (2011)

    Article  Google Scholar 

  12. H. Kim, B.N. Popov, Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 150, D56 (2003)

    Article  Google Scholar 

  13. P. Zhang, X. Li, Q. Zhao, S. Liu, Synthesis and optical property of one dimensional spinel ZnMn2O4 nanorods. Nanoscale Res. Lett. 6, 323 (2011)

    Article  Google Scholar 

  14. X. Zhai, W. Yang, M. Li, G. Lv, J. Liu, X. Zhang, Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon 65, 277 (2013)

    Article  Google Scholar 

  15. S.A. Hosseini, D. Salari, A. Niaei, F. Deganello, G. Pantaleo, P. Hojati, Chemical-physical properties of spinel CoMn2O4 nano-powders and catalytic activity in the 2-propanol and toluene combustion: effect of the preparation method. J. Environ. Sci. Health A 46, 291 (2011)

    Article  Google Scholar 

  16. J. Habjanic, M. Juric, J. Popovic, K. Molcanov, D. Pajic, A 3D oxalate-based network as a precursor for the CoMn2O4 spinel: synthesis and structural and magnetic studies. Inorg. Chem. 53, 9633–9643 (2014)

    Article  Google Scholar 

  17. E. Jokar, A.I. Zad, S. Shahrokhian, Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J. Solid State Electrochem. 19, 269 (2015)

    Article  Google Scholar 

  18. G. Zhang, X.W.D. Lou, Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci. Rep. 3, 1470 (2013)

    Google Scholar 

  19. R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X.S. Zhao, P. Guo, Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: the effect of ionic radius. Colloids. Surf. A: Physicochem. Eng. Asp. 457, 94 (2014)

    Article  Google Scholar 

  20. J. Li, S. Xiong, X. Li, Y. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5, 2045 (2013)

    Article  Google Scholar 

  21. L. Hu, H. Zhong, X. Zheng, Y. Huang, P. Zhang, Q. Chen, CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2, 986 (2012)

    Google Scholar 

  22. Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, H. Yuan, Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in Supercapacitors. J. Mater. Chem. A 2, 16480 (2014)

    Article  Google Scholar 

  23. A.K. Mondal, D. Su, S. Chen, A. Ung, H.-S. Kim, G. Wang, Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chem. Eur. J. 20, 1 (2014)

    Article  Google Scholar 

  24. N.J. Tharayil, R. Raveendran, A.V. Vaidyan, Synthesis and characterization of nano sized cobalt-manganese spinel oxide. Ind. J. Pure Appl. Phys. 46, 47 (2008)

    Google Scholar 

  25. B. Senthilkumar, R.K. Selvan, P. Vinothbabu, I. Perelshtein, A. Gedanken, Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. Mater. Chem. Phys. 130, 285 (2011)

    Article  Google Scholar 

  26. P. Mahata, D. Sarma, C. Madhu, A. Sundaresenand, S. Natarajan, CoMn2O4 spinel from a MOF: synthesis, structure and magnetic studies. Dalton Trans. 40, 1952 (2011)

    Article  Google Scholar 

  27. J.-L. Liu, L.-Z. Fan, X. Qu, Low temperature hydrothermal synthesis of nano-sized manganese oxide for supercapacitors. Electrochim. Acta 66, 302 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The author P. Vigneshwaran sincerely thanks to TEQIP-II for the financial support to carry out the project work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vetha Potheher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneshwaran, P., Kandiban, M., Senthil Kumar, N. et al. A study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications. J Mater Sci: Mater Electron 27, 4653–4658 (2016). https://doi.org/10.1007/s10854-016-4343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4343-6

Keywords

Navigation