Skip to main content
Log in

Crystalline structure and dielectric properties of multiferroic Cr-doped YMnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

YMn0.9Cr0.1O3 polycrystalline material was synthesized by conventional solid-state reaction method. The crystalline structure and dielectric properties of YMn0.9Cr0.1O3 were investigated. YMn0.9Cr0.1O3 ceramic is proved to be a hexagonal structure with P6 3 cm space group by the X-ray diffraction. The temperature dependence of dielectric constant and loss curves indicate YMnO3 and YMn0.9Cr0.1O3 samples exhibit an obvious dielectric relaxation behavior at low temperature range. The frequency dependence of dielectric loss peak follows an Arrhenius law. The XPS analysis suggest that the increase in valence compensation and the decrease in oxide vacancy compensation cause lower dielectric constant in the Cr doped YMn0.9Cr0.1O3 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Park, S. Lee, M. Kang, K.H. Jang, C. Lee, S.V. Streltsov, V.V. Mazurenko, M.V. Valentyuk, J.E. Medvedeva, T. Kamiyama, J.G. Park, Phys. Rev. B 82, 054428 (2010)

    Article  Google Scholar 

  2. M. Sahni, N. Kumar, S. Singh, A. Jha, S. Chaubey, M. Kumar, M.K. Sharma, J. Mater. Sci. Mater. Electron. 25, 2199–2209 (2014)

    Article  Google Scholar 

  3. Z.W. Chen, W.L. Jin, J. Mater. Sci. Mater. Electron. 25, 4039–4045 (2014)

    Article  Google Scholar 

  4. B. Sun, C.M. Li, Phys. Chem. Chem. Phys. 17, 6718–6721 (2015)

    Article  Google Scholar 

  5. K. Singh, M.-B. Lepetit, C. Simon, N. Bellido, S. Pailhes, J. Varignon, A.D. Muer, J. Phys. Condens. Matter 25, 416002 (2013)

    Article  Google Scholar 

  6. B. Sun, J.H. Wu, X.J. Jia, P. Chen, Scr. Mater. 105, 26–29 (2015)

    Article  Google Scholar 

  7. B. Sun, Y.H. Liu, P. Chen, Scri. Mater. 89, 17–20 (2014)

    Article  Google Scholar 

  8. S. Ishiwata, Y. Tokunaga, Y. Taguchi, Y. Tokura, J. Am. Chem. Soc. 133, 13818–13820 (2011)

    Article  Google Scholar 

  9. B. Sun, L.J. Wei, H.W. Li, P. Chen, J. Mater. Chem. C 2, 7547–7551 (2014)

    Article  Google Scholar 

  10. A. Midya, S.N. Das, P. Mandal, Phys. Rev. B 84, 235127 (2011)

    Article  Google Scholar 

  11. B. Sun, H.W. Li, L.J. Wei, P. Chen, RSC Adv. 4, 50102–50106 (2014)

    Article  Google Scholar 

  12. C.G. Zhou, X.Y. Liu, W.X. Li, C.L. Yuan, J. Mater. Sci. Mater. Electron. 21, 364–367 (2010)

    Article  Google Scholar 

  13. Y. Ma, X.T. Wang, Z.F. Wang, H. Liu, Z. Wang, C.Y. Yang, Q. Zou, W.W. Zeng, J. Mater. Sci. Mater. Electron. 26, 398–404 (2015)

    Article  Google Scholar 

  14. S. Mori, J. Tokunaga, Y. Horibe, Phys. Rev. B 72, 224434 (2005)

    Article  Google Scholar 

  15. K. Mukherjee, K. Kumar, A. Banerjee, Solid State Commun. 153, 66–70 (2013)

    Article  Google Scholar 

  16. R.K. Thakur, R. Thakur, S.S. Samatham, N. Kaurav, V. Ganesan, N.K. Gaur, G.S. Okram, J. Appl. Phys. 112, 104115 (2012)

    Article  Google Scholar 

  17. C.G. Zhang, X. Zhang, Y.H. Sun, S.Y. Liu, Phys. Rev. B 83, 054104 (2011)

    Article  Google Scholar 

  18. B.B. Van Aken, J.-W.G. Bos, R.A. de Groot, T.T.M. Palstra, Phys. Rev. B 63, 125127 (2001)

    Article  Google Scholar 

  19. M.N. Iliev, B. Lorenz, A.P. Litvinchuk, Y.-Q. Wang, Y.Y. Sun, C.W. Chu, J. Phys. Condens. Matter 17, 3333–3341 (2005)

    Article  Google Scholar 

  20. X. Fabreges, I. Mirebeau, S. Petit, P. Bonville, A.A. Belik, Phys. Rev. B 84, 054455 (2011)

    Article  Google Scholar 

  21. K. Asokan, Y.S. Chen, C.W. Pao, H.M. Tsai, C.W.O. Lee, C.H. Lin, H.C. Hsueh, D.C. Ling, W.F. Pong, J.W. Chiou, M.-H. Tsai, O. Pena, C. Moure, Appl. Phys. Lett. 95, 131901 (2009)

    Article  Google Scholar 

  22. S.L. Samal, W. Green, S.E. Lofland, K.V. Ramanujachary, D. Das, A.K. Ganguli, J. Solid State Chem. 18, 61–66 (2008)

    Article  Google Scholar 

  23. M. Carlos, G. Dionisio, P. Octavio, D. Pedro, J. Solid State Chem. 163, 377–384 (2002)

    Article  Google Scholar 

  24. N. Jiang, X. Zhang, J. Phys. Condens. Matter 24, 235402 (2012)

    Article  Google Scholar 

  25. U. Salazar-Kuri, M.E. Mendoza, J.M. Siqueiros, Phys. B 407, 3551–3554 (2012)

    Article  Google Scholar 

  26. J. Park, M. Kang, J. Kim, S. Lee, K.-H. Jang, A. Pirogov, J.-G. Park, Phys. Rev. B 79, 064417 (2009)

    Article  Google Scholar 

  27. P.R. Ren, H.Q. Fan, X. Wang, Appl. Phys. Lett. 103, 152905 (2013)

    Article  Google Scholar 

  28. Y. Ma, Y.J. Wu, X.M. Chen, J.P. Cheng, Y.Q. Lin, Ceram. Int. 35, 3051–3055 (2009)

    Article  Google Scholar 

  29. Y. Ma, Y.J. Wu, Y.Q. Lin, X.M. Chen, J. Mater. Sci. Mater. Electron. 21, 838–843 (2010)

    Article  Google Scholar 

  30. Y.L. Chai, C.S. His, Y.T. Lin, Y.S. Chang, J. Alloys Compd. 588, 248–253 (2014)

    Article  Google Scholar 

  31. P. Raghvendra, R.K. Singh, J. Singh, Alloys Compd. 549, 238–244 (2013)

    Article  Google Scholar 

  32. Z.J. Huang, Y. Cao, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Phys. Rev. B 56, 2623–2626 (1997)

    Article  Google Scholar 

  33. F. Hong, Z.X. Cheng, S.J. Zhang, X.L. Wang, J. Appl. Phys. 111, 034104 (2012)

    Article  Google Scholar 

  34. X.B. Wu, X.F. Wang, Y.F. Liu, W. Cai, S. Peng, F.Z. Huang, X.M. Lu, F. Yan, J.S. Zhu, Appl. Phys. Lett. 95, 182903 (2009)

    Article  Google Scholar 

  35. P.R. Mandal, T.K. Nath, J. Alloys Compd. 628, 379–389 (2015)

    Article  Google Scholar 

  36. M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S.I. Shah, Nanotechnology 17, 2675–2680 (2006)

    Article  Google Scholar 

  37. Y.J. Wu, L.H. Tang, H.L. Li, X.M. Chen, J. Alloys Compd. 496, 269–272 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Prof. K. X. Jin for their help with properties measurements. We acknowledge the financial support of the National Basic Research Program of China (2012CB821404), the National Natural Science Foundation of China (51471135, 51171152, 51301133 and 51501103), the Fundamental Research Funds for Central Universities (3102014 JCQ01093 and 3102014 JCQ01090) and Aeronautical Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Bai or Chongde Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, F., Lin, X., Bai, X. et al. Crystalline structure and dielectric properties of multiferroic Cr-doped YMnO3 . J Mater Sci: Mater Electron 27, 3082–3087 (2016). https://doi.org/10.1007/s10854-015-4133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4133-6

Keywords

Navigation