Skip to main content
Log in

Effect of pyridine capping on morphological and optical properties of ZnS:Mn2+ core–shell quantum dots

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, pyridine-coated ZnS:Mn2+ core–shell quantum dots are synthesized through a simple soft chemical route, namely the chemical precipitation method and the effect of pyridine capping has been studied on the morphological and optical parameters of the quantum dots. Morphological properties are investigated through X-ray diffraction (XRD) and transmission electron microscopy. XRD measurements showed that both the ZnS:Mn+ quantum dots and the ZnS quantum dots possessed a zinc blende structure and the crystal structure is not changed with the capping and Mn2+ doping. Bandgap measurements are made through UV–visible spectroscopy. FTIR spectra gave the direct evidence that pyridine shells have been successfully coated on the ZnS:Mn+ quantum dots. Room-temperature photoluminescence spectrum of the undoped sample, exhibited only a blue-light emission peaked at 422.6 nm under UV excitation. However, from the Mn2+ doped samples, a yellow-orange emission from the Mn2+ (4T1 − 6A1) transition has been observed along with the blue emission. For 1 % capping concentration efficient emission of yellow-orange light with the emission peak at 590 nm is observed along with the suppressed defect related blue emission. As pyridine is an excellent capping agent for functionalization of quantum dots by ligand exchange process so the synthesized highly fluorescent core–shell quantum dots are very important for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Yao, K.R. Elder, H. Guo, M. Grant, Phys. Rev. B 47, 14110–14125 (1993)

    Article  Google Scholar 

  2. H.C. Warad, S.C. Ghosh, B. Hemtanon, C. Thanachayanont, J. Dutta, Sci. Technol. Adv. Mater. 6(3–4), 296–301 (2005)

    Article  Google Scholar 

  3. F. Seker, K. Meeker, T.F. Kuech, A.B. Ellis, Chem. Rev. 100, 2505 (2000)

    Article  Google Scholar 

  4. M.A. El-Sayed, Acc. Chem. Res. 37, 326–333 (2004)

    Article  Google Scholar 

  5. N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, J. Appl. Phys. 88(11), 6260–6264 (2000)

    Article  Google Scholar 

  6. M. Singhal, J.K. Sharma, S. Kumar, J. Mater. Sci. Mater. Electron. 23, 1387–1392 (2012)

    Article  Google Scholar 

  7. G. Ghosh, M.K. Naskar, A. Patra, M. Chatterjee, Opt. Mater. 28(8–9), 1047–1053 (2006)

    Article  Google Scholar 

  8. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. Commun. 12(5), 1102–1105 (2000)

    Article  Google Scholar 

  9. W.J. Parak, D. Gerion, D. Zanchet, A.S. Woerz, T. Pellegrino, C.M. Micheel, S.C. Williams, M. Seitz, R.E. Bruehl, Z. Bryant, C. Bustamante, C.R. Bertozzi, A.P. Alivisatos, Chem. Mater. 14(5), 2113–2119 (2002)

    Article  Google Scholar 

  10. S. Kumar, M. Singhal, J.K. Sharma, J. Mater. Sci. Mater. Electron. 24, 3875–3880 (2013)

    Article  Google Scholar 

  11. W.U. Huynh, J.J. Dittmer, W.C. Libby, G.L. Whiting, A.P. Alivisatos, Adv. Funct. Mater. 13(1), 73–79 (2003)

    Article  Google Scholar 

  12. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Muñoz Javier, H.E. Gaub, S. Stölzle, N. Fertig, W.J. Parak, Nano Lett. 5, 331–338 (2005)

    Article  Google Scholar 

  13. V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Phys. Rev. B. 61(20), R13349–R13352 (2000)

    Article  Google Scholar 

  14. V.J. Gandubert, R.B. Lennox, Langmuir 21(14), 6532–6539 (2005)

    Article  Google Scholar 

  15. S. Rucareanu, V.J. Gandubert, Chem. Mater. 18(19), 4674–4680 (2006)

    Article  Google Scholar 

  16. S.J. Wang, H. Kim, H.H. Park, Vac. Sci. Technol. A. 28(4), 559–563 (2010)

    Article  Google Scholar 

  17. M. Singhal, J.K. Sharma, S. Kumar, Adv. Sci. Eng. Med. 5(2), 133–139 (2013)

    Article  Google Scholar 

  18. Y.Y. Lin, J. Wang, G. Liu, H. Wu, C.M. Wai, Y. Lin, Biosens. Bioelectron. 23(11), 1659–1665 (2008)

    Article  Google Scholar 

  19. S.H. Kang, C.K. Kumar, Z. Lee, K.H. Kim, C. Huh, E.T. Kim, Appl. Phys. Lett. 93, 191116–191118 (2008)

    Article  Google Scholar 

  20. P. Du, X.Q. Zhang, X.B. Sun, Z.G. Yao, Y.S. Eang, Chin. Phys. B 15, 1370–1373 (2006)

    Article  Google Scholar 

  21. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72(3), 416–419 (1994)

    Article  Google Scholar 

  22. Z.W. Quan, D.M. Yang, C.X. Li, D.Y. Kong, P.P. Yang, Z.Y. Cheng, J. Lin, Langmuir 25, 10259–10262 (2009)

    Article  Google Scholar 

  23. Q.J. Sun, Y.A. Wang, L.S. Li, D.Y. Wang, T. Zhu, J. Xu, C.H. Yang, Y.F. Li, Nat. Photonics 1, 717–722 (2007)

    Article  Google Scholar 

  24. Y. Yang, Y.Q. Li, S.Y. Fu, H.M. Xiao, J. Phys. Chem. C 112, 10553–10558 (2008)

    Article  Google Scholar 

  25. K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Appl. Phys. Lett. 84(2), 284–286 (2004)

    Article  Google Scholar 

  26. A. Vecht, J. Cryst. Growth 59, 81–97 (1982)

    Article  Google Scholar 

  27. Y. Yang, S. Xue, S. Liu, J. Huang, J. Shen, Appl. Phys. Lett. 69, 377–379 (1996)

    Article  Google Scholar 

  28. J.P. Li, Y. Xu, Y. Liu, D. Wu, Y. Sun, China Particuol. 2, 266–269 (2004)

    Article  Google Scholar 

  29. Y. Li, J. Chen, C. Zhu, L. Wang, D. Zhao, S. Zhao, Y. Wu, Spectrochim. Acta Part A 60, 1719–1724 (2004)

    Article  Google Scholar 

  30. M. Wang, L. Sun, X. Fu, C. Liao, C. Yan, Solid State Commun. 115(9), 493–496 (2000)

    Article  Google Scholar 

  31. A.A. Bol, J. Ferwerda, J.A. Bergwerff, A. Meijerink, J. Lumin. 99, 325–334 (2002)

    Article  Google Scholar 

  32. H. Soni, M. Chawda, D. Bodas, Mater. Lett. 63(9), 767–769 (2009)

    Article  Google Scholar 

  33. A.A. Bol, R.V. Beek, A. Meijerink, Chem. Mater. 14(3), 1121–1126 (2002)

    Article  Google Scholar 

  34. D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys. 84(5), 2841–2845 (1998)

    Article  Google Scholar 

  35. A.A. Ashkarran, Mater. Sci. Semicond. Process. 17, 1–6 (2014)

    Article  Google Scholar 

  36. S. Sen, C.S. Solanki, P. Sharma, J. Lumin. 145, 669–675 (2014)

    Article  Google Scholar 

  37. R.N. Bhargava, J. Lumin. 70(1–6), 85–94 (1996)

    Article  Google Scholar 

  38. N. Karar, F. Singh, B.R. Mehta, J. Appl. Phys. 95, 656–660 (2004)

    Article  Google Scholar 

  39. Y. Ding, X.D. Wang, Z.L. Wang, Chem. Phys. Lett. 398, 32–36 (2004)

    Article  Google Scholar 

  40. A.B. Cruz, Q. Shen, T. Toyoda, Mater. Sci. Eng. C 25, 761–765 (2005)

    Article  Google Scholar 

  41. H.F. Wang, Y. He, T.R. Ji, X.P. Yan, Anal. Chem. 81(4), 1615–1621 (2009)

    Article  Google Scholar 

  42. H.F. Wang, Y. Li, Y.Y. Wu, Y. He, X.P. Yan, Chem. Eur. J. 16, 12988–12994 (2010)

    Article  Google Scholar 

  43. P. Wu, Y. He, H.F. Wang, X.P. Yan, Anal. Chem. 82(4), 1427–1433 (2010)

    Article  Google Scholar 

  44. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna, Phys. Rev. B 60(13), 9191–9193 (1999)

    Article  Google Scholar 

  45. L.E. Brus, J. Chem. Phys. 80, 4403–4409 (1984)

    Article  Google Scholar 

  46. M. Sharma, S. Kumar, O.P. Pandey, J. Nanopart. Res. 12, 2655–2666 (2010)

    Article  Google Scholar 

  47. A.A. Bol, A. Meijerink, Phys. Rev. B 58(24), 15997–16000 (1998)

    Article  Google Scholar 

  48. S. Kar, S. Chaudhary, J. Phys. Chem. B 109(8), 3298–3302 (2005)

    Article  Google Scholar 

  49. B. Xia, I.W. Lenggoro, K. Okuyama, Chem. Mater. 14, 4969–4974 (2002)

    Article  Google Scholar 

  50. A.A. Bol, A. Meijerink, J. Lumin. 87, 315–318 (2000)

    Article  Google Scholar 

  51. H.S. Bhatti, R. Sharma, N.K. Verma, Parmana. J. Phys. 65(3), 541–546 (2005)

    Google Scholar 

  52. A. Jain, S. Panwar, T.W. Kang, H.C. Jeon, S. Kumar, R.K. Choubey, J. Mater. Sci. Mater. Electron. 25(4), 1716–1723 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, M., Sharma, J.K., Jeon, H.C. et al. Effect of pyridine capping on morphological and optical properties of ZnS:Mn2+ core–shell quantum dots. J Mater Sci: Mater Electron 27, 3003–3010 (2016). https://doi.org/10.1007/s10854-015-4122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4122-9

Keywords

Navigation