Skip to main content
Log in

Characterization of a fast grown GaAs:Sn thin film by thermionic vacuum arc

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, a tin doped gallium arsenide thin film was grown on a glass substrate by means of the TVA technique in a very short period of time (70 s) and it’s morphological, compositional, and optical properties were examined. The deposited GaAs:Sn structures were characterized via both atomic force microscope (AFM) and field emission scanning electron microscope (FESEM). In this context, current research aims to reach a conclusion about the structure of the produced GaAs:Sn film by combining AFM, FESEM and energy dispersive X-ray spectroscopy data. From the optical investigation, the refractive index and extinction coefficient values for the produced film were obtained as 3.68 and 0.03 at the wavelength of 632.8 nm, respectively. The direct optical band gap energy of the deposited thin film was determined by two different models. Estimated optical band gap values were compared with each other. The results showed that TVA technique is suitable for a GaAs:Sn coating on glass substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Gupta, R.S. Gupta, R.K. Singh, J. Comput. Theor. Nanosci. 11(5), 1330–1334 (2014). doi:10.1166/jctn.2014.3500

    Article  Google Scholar 

  2. Q. Li, C.W. Tang, K.M. Lau, Appl. Phys. Express 7(4), 045502 (2014). doi:10.7567/APEX.7.045502

    Article  Google Scholar 

  3. E.D. Kosten, J.H. Atwater, J. Parsons, A. Polman, H.A. Atwater, Light Sci. Appl. 2(1), e45 (2013). doi:10.1038/lsa.2013.1

    Article  Google Scholar 

  4. H. Xia, Z.Y. Lu, T.X. Li, P. Parkinson, Z.M. Liao, F.H. Liu et al., ACS Nano 6(7), 6005–6013 (2012). doi:10.1021/nn300962z

    Article  Google Scholar 

  5. S.G. Ihn, M.Y. Ryu, J.I. Song, Solid State Commun. 150(15), 729–733 (2010). doi:10.1016/j.ssc.2010.01.037

    Article  Google Scholar 

  6. A.R. Vearey-Roberts, D.A. Evans, Appl. Phys. Lett. 86(7), 072105 (2005). doi:10.1063/1.1864255

    Article  Google Scholar 

  7. K. Hjort, J. Soderkvist, J.A. Schweitz, J. Micromech. Microeng. 4(1), 1 (1994). doi:10.1088/0960-1317/4/1/001

    Article  Google Scholar 

  8. X. Peng, A. Copple, Phys. Rev. B 87(11), 115308 (2013). doi:10.1103/PhysRevB.87.115308

    Article  Google Scholar 

  9. P. Kusch, S. Breuer, M. Ramsteiner, L. Geelhaar, H. Riechert, S. Reich, Phys. Rev. B 86(7), 075317 (2012). doi:10.1103/PhysRevB.86.075317

    Article  Google Scholar 

  10. T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, Opt. Mater. Express 2(6), 799–813 (2012). doi:10.1364/OME.2.000799

    Article  Google Scholar 

  11. L. Ahtapodov, J. Todorovic, P. Olk, T. Mjåland, P. Slåttnes, D.L. Dheeraj et al., Nano Lett. 12(12), 6090–6095 (2012). doi:10.1021/nl3025714

    Article  Google Scholar 

  12. K. Uesugi, I. Suemune, T. Hasegawa, T. Akutagawa, T. Nakamura, Appl. Phys. Lett. 76(10), 1285–1287 (2000). doi:10.1063/1.126010

    Article  Google Scholar 

  13. J.A. Czaban, D.A. Thompson, R.R. LaPierre, Nano Lett. 9(1), 148–154 (2008). doi:10.1021/nl802700u

    Article  Google Scholar 

  14. E.F. Schubert, Doping in III–V semiconductors, vol. 27 (Cambridge University Press, Cambridge, 1993), pp. 200–202

    Book  Google Scholar 

  15. V.I. Fistul, Impurities in semiconductors: solubility, migration and interactions (CRC Press, Florida, 2004), p. 94

    Book  Google Scholar 

  16. K. Tanabe, D. Guimard, D. Bordel, Y. Arakawa, Appl. Phys. Lett. 100(19), 193905 (2012). doi:10.1063/1.4714767

    Article  Google Scholar 

  17. C. Bilel, H. Fitouri, I. Zaied, A. Bchetnia, A. Rebey, B. El Jani, Mater. Sci. Semicond. Process. 31, 100–105 (2015). doi:10.1016/j.mssp.2014.11.008

    Article  Google Scholar 

  18. D. Vazquez-Cortas, S. Shimomura, M. Lopez-Lopez, E. Cruz-Hernandez, S. Gallardo-Hernandez, Y. Kudriavtsev, V.H. Mendez-Garcia, J. Cryst. Growth 347(1), 77–81 (2012). doi:10.1016/j.jcrysgro.2012.03.008

    Article  Google Scholar 

  19. M. Venegas, R. Bernal, M. López, A. Pulzara, J. Phys. Conf. Ser. 480(1), 012017 (2014). doi:10.1088/1742-6596/480/1/012017

    Article  Google Scholar 

  20. A. Boronat, S. Silvestre, L. Castañer, J. Non-Cryst. Solids 359, 21–26 (2013). doi:10.1016/j.jnoncrysol.2012.09.017

    Article  Google Scholar 

  21. K. Abderrafi, E. Jiménez, T. Ben, S.I. Molina, R. Ibáñez, V. Chirvony, J.P. Martínez-Pastor, J. Nanosci. Nanotechnol. 12(8), 6774–6778 (2012). doi:10.1166/jnn.2012.4548

    Article  Google Scholar 

  22. S. Pat, Ş. Korkmaz, S. Özen, V. Şenay, J. Mater. Sci. Mater. Electron. 26(4), 2210–2214 (2015). doi:10.1007/s10854-015-2670-7

    Article  Google Scholar 

  23. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Appl. Phys. Express 7(3), 032302 (2014). doi:10.7567/APEX.7.032302

    Article  Google Scholar 

  24. A. Kratzig, C. Zachäus, S. Brunken, D. Thomas, P. Bogdanoff, K. Ellmer et al., Phys. Status Solidi (a) 211(9), 2020–2029 (2014). doi:10.1002/pssa.201431284

    Article  Google Scholar 

  25. V. Şenay, S. Özen, S. Pat, Ş. Korkmaz, Vacuum 119, 228–232 (2015). doi:10.1016/j.vacuum.2015.05.030

    Article  Google Scholar 

  26. S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Eur. Phys. J. Plus 130(6), 1–6 (2015). doi:10.1140/epjp/i2015-15108-3

    Article  Google Scholar 

  27. S. Pat, Ş. Korkmaz, S. Özen, V. Şenay, Mater. Chem. Phys. 159, 1–5 (2015). doi:10.1016/j.matchemphys.2015.03.043

    Article  Google Scholar 

  28. S. Özen, S. Pat, V. Şenay, Ş. Korkmaz, B. Geçici, J. Nanoelectron. Optoelectron. 10(1), 56–60 (2015). doi:10.1166/jno.2015.1693

    Article  Google Scholar 

  29. S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, J. Mater. Sci. Mater. Electron. 26(7), 5060–5064 (2015). doi:10.1007/s10854-015-3027-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Emrah Dolgunsöz from Bayburt University for improving the use of English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soner Özen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özen, S., Şenay, V., Pat, S. et al. Characterization of a fast grown GaAs:Sn thin film by thermionic vacuum arc. J Mater Sci: Mater Electron 26, 8983–8987 (2015). https://doi.org/10.1007/s10854-015-3581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3581-3

Keywords

Navigation