Skip to main content
Log in

Hydrogen-free synthesis of few-layer graphene film on different substrates by plasma enhanced chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Few layer graphene were synthesized on different substrates by radio frequency plasma enhanced chemical vapor deposition in the absence of any catalyst under 300 °C. Raman spectral characterization verified the bonding form of the films to be mostly sp 2. The principal chemical mechanisms relevant to the growth of graphene from gaseous hydrogen and hydrocarbon species are presented. The kinetic processes during the activation and transport of the gaseous species are described. Furthermore, the effects of substrate treatment in the course of growth are analyzed. We demonstrated that the differences in growth conditions reveal different mechanisms of growth of graphene by chemical vapor deposition. Nevertheless, the overall thermodynamic and dynamics principles are identical. It is reasonable to obtain few layer graphene films by using methane alone without H2 as source gas. Moreover, graphene films of various feature and structures for different purposes can be achieved controllably by modulating the kinetic factors. Also, these graphene films can be used in many photoelectric devices such as solar cells and photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Virendra Singh, Daeha Joung, Lei Zhai, Soumen Das, Saiful I. Khondaker, Sudipta Seal, Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)

    Article  Google Scholar 

  2. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 5, 1312–1314 (2009)

    Article  Google Scholar 

  3. Cecilia Mattevi, Hokwon Kim, Manish Chhowalla, A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2011)

    Article  Google Scholar 

  4. K.S. Novoselov, V.I. Falako, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–201 (2012)

    Article  Google Scholar 

  5. Nathan O. Weiss, Hailong Zhou, Lei Liao, Yuan Liu, Yu. Shan Jiang, Xiangfeng Duan Huang, Graphene: an emerging electronic material. Adv. Mater. 1, 1–44 (2012)

    Google Scholar 

  6. ChunXian Guo, GuanHong Guai, ChangMing Li, Graphene based materials: enhancing solar energy harvesting. Adv. Energy Mater. 1, 448–452 (2011)

    Article  Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  8. A.C.B. Dale, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sources 196, 4873–4885 (2011)

    Article  Google Scholar 

  9. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  11. M. Pumera, Graphene in biosensing. Mater. Today 14, 308–315 (2011)

    Article  Google Scholar 

  12. Da Chen, Hao Zhang, Yang Liu, Jinghong Li, Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 6, 1362–1387 (2013)

    Article  Google Scholar 

  13. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  Google Scholar 

  14. C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  Google Scholar 

  15. HangXing Wang, Qiang Wang, Kai-Ge Zhou, Hao-Li Zhang, Graphene in light: design, synthesis and applications of photo-active graphene and graphene-like materials. Small 9(8), 1266–1283 (2013)

    Article  Google Scholar 

  16. C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  Google Scholar 

  17. Q.K. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008)

    Article  Google Scholar 

  18. L.G. De Arco, Y. Zhang, A. Kumar, C. Zhou, Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. Trans. Nanotechnol. 8, 135–138 (2009)

    Article  Google Scholar 

  19. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  Google Scholar 

  20. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  21. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  22. S.M. Chen, M. Gao, R.N. Cao, J. Yang, H.W. Du, L. Zhao, Z.Q. Ma. Hydrogen-free synthesis of graphene-graphitic films directly on Si substrate by plasma enhanced chemical vapor deposition. J. Mater. Sci.: Mater. Electron 26(3), 1485–1493 (2015)

    Google Scholar 

  23. Jaime A. Torres, Richard B. Kaner, Graphene closer to fruition. Nat. Mater. 13, 328–329 (2014)

    Article  Google Scholar 

  24. Zheng Yan, Zhiwei Peng, James M. Tour, Chemical vapor deposition of graphene single crystals. Acc. Chem. Res. 47, 1327–1337 (2014)

    Article  Google Scholar 

  25. Alexander G. Kvashnin, Leonid A. Chernozatonskii, Boris I. Yakobson, Pavel B. Sorokin, Chemical vapor deposition of graphene single crystals. Nano Lett. 14, 676–681 (2014)

    Article  Google Scholar 

  26. Christophe Guret, Michel Daroux, Francis Billaudi, Methane pyrolysis: thermodynamics. Chem. Eng. Sci. 52(5), 815–827 (1997)

    Article  Google Scholar 

  27. A.L. da Silva, I.L. Müller, Operation of solid oxide fuel cells on glycerol fuel: a thermodynamic analysis using the Gibbs free energy minimization approach. J. Power Sources 195, 5637–5644 (2010)

    Article  Google Scholar 

  28. K.S. Kim, J.H. Seo, J.S. Nam, W.T. Ju, S.H. Hong, Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas. Trans. Plasam Sci 33(2), 813–823 (2005)

    Article  Google Scholar 

  29. Wenhua Zhang, Wu Ping, Zhenyu Li, Jinlong Yang, First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 115, 17782–17787 (2011)

    Article  Google Scholar 

  30. Robert S. Weatherup, Bruno Dlubak, Stephan Hofmann, Kinetic control of catalytic CVD for high-quality graphene at low temperatures. ACS Nano 6(11), 9996–10003 (2012)

    Article  Google Scholar 

  31. Donghua Liu, Wei Yang, Lianchang Zhang, Jing Zhang, Jianling Meng, Rong Yang, Guangyu Zhang, Dongxia Shi, Two-step growth of graphene with separate controlling nucleation and edge growth directly on SiO2 substrates. Carbon 72, 387–392 (2014)

    Article  Google Scholar 

  32. Ivan Vlassiouk, Murari Regmi, Pasquale Fulvio, Sheng Dai, Panos Datskos, Gyula Eres, Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5(7), 6069–6076 (2011)

    Article  Google Scholar 

  33. J.A. Venables, G.D.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399–459 (1984)

    Article  Google Scholar 

  34. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53(3), 1126–1130 (1970)

    Article  Google Scholar 

  35. Diane S. Knight, William B. White, Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4(2), 385–393 (1989)

    Article  Google Scholar 

  36. Andrea C. Ferrari, Denis M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(46), 235–246 (2013)

    Article  Google Scholar 

  37. A. Yoshimura, H. Yoshimura, S.C. Shin, K. Kobayashi, M. Tanimura, M. Tachibana, Atomic force microscopy and Raman spectroscopy study of the early stages of carbon nanowall growth by dc plasma enhanced chemical vapor deposition. Carbon 50, 2698–2702 (2012)

    Article  Google Scholar 

  38. Yalin Dong, Wu Xiawa, Ashlie Martini, Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24, 375701–375706 (2013)

    Article  Google Scholar 

  39. C.M. Seah, S.-P. Chai, A.R. Mohamed, Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70, 1–21 (2014)

    Article  Google Scholar 

  40. Santiago Esconjauregui, Caroline M. Whelan, Karen Maex, The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47, 659–669 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The sincere appreciation is first given to SHU-SOENs PV Joint Lab. Also, this work was partly supported by the Natural Science Foundation (Nos. 61274067 and 60876045) of China, Shanghai Leading Basic Research Project (No. 09JC1405900), and R&D Foundation of SHU-SOENs PV Joint Lab (No. SS-E0700601). Part measurements were supported by Analysis and Testing Center of Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongquan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Gao, M., Zhao, L. et al. Hydrogen-free synthesis of few-layer graphene film on different substrates by plasma enhanced chemical vapor deposition. J Mater Sci: Mater Electron 26, 6961–6969 (2015). https://doi.org/10.1007/s10854-015-3315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3315-6

Keywords

Navigation