Skip to main content
Log in

Dielectric properties and impedance characteristics of BaO–Cr2O3–Sb2O5 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of polycrystalline BaO–Cr2O3–Sb2O5 (BCS) ceramics were fabricated by the conventional solid-state reaction method. The phase composition, microstructures, sintering characteristics and dielectric properties were systematically investigated. The results showed that major phases were indexed to be hexagonal BaSb2O6 and orthorhombic BaCr2O4, and microstructures were markedly influenced by sintering temperatures. Dielectric study in a wide temperature (20–300 °C) and frequency (100–10 MHz) range has been performed. With increasing temperature, the real (\(\varepsilon^{\prime }\)) and imaginary (\(\varepsilon^{\prime \prime }\)) parts of dielectric permittivity similarly enhanced at low frequencies, indicating a thermally activated relaxation. Complex impedance spectroscopy analysis reveals that the dielectric behavior is attributed to the huge interfacial polarization and electrical response of grain boundaries. The activation energy for relaxation (0.486 eV) is nearly comparable to that for the dc conduction process (0.502 eV), implying the polarization process depends on polaron hopping based on electron carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  2. K. Iijima, Y. Tomita, R. Takayama, I. Ueda, J. Appl. Phys. 60, 361 (1986)

    Article  Google Scholar 

  3. Y. Yang, J.M. Liu, H.B. Huang, W.Q. Zou, P. Bao, Z.G. Liu, Phys. Rev. B 70, 132101 (2004)

    Article  Google Scholar 

  4. W. Hu, K. Hayashi, K. Ohwada, J. Chen, N. Happo, S. Hosokawa, M. Takahasi, A.A. Bokov, Z.G. Ye, Phys. Rev. B 89, 140103 (2014)

    Article  Google Scholar 

  5. V.V. Shvartsman, J. Dec, T. Lukasiewicz, A.L. Khalkin, W.K. Leemann, Ferroelectrics 373, 77 (2008)

    Article  Google Scholar 

  6. Q.T. Zhang, B. Li, H.L. Li, X.P. Zhang, J. Rare. Earth. 25, 30 (2007)

    Article  Google Scholar 

  7. E.A. Nenasheva, S.S. Redozubov, N.F. Kartenko, I.M. Gaidamaka, J. Eur. Ceram. Soc. 31, 1097 (2011)

    Article  Google Scholar 

  8. V. Bobnar, J. Bernard, M. Kosec, Appl. Phys. Lett. 85, 994 (2004)

    Article  Google Scholar 

  9. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)

    Article  Google Scholar 

  10. Y. Liu, Q.R. Chen, X.G. Zhao, J. Mater. Sci. Mater. El. 25, 1547 (2014)

    Article  Google Scholar 

  11. K. Prasad, S. Bhagat, K. Amarnath, N. Choudhary, K.L. Yadav, Mater. Sci. Poland. 28, 317 (2010)

    Google Scholar 

  12. P. Kum-onsa, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 35, 1441 (2015)

    Article  Google Scholar 

  13. K. Pornsawan, T. Prasit, P. Bundit, Y. Teerapon, M. Santi, J. Eur. Ceram. Soc. 35, 383 (2015)

    Article  Google Scholar 

  14. S.Y. Gordeev, V.I. Serdyukov, Izv. Akad. Nauk. SSSR Neorg. Mater. 3, 1653 (1967)

    Google Scholar 

  15. W.S. Kim, T.H. Kim, E.S. Kim, J.S. Jeon, K.H. Yoon, Jpn. J. Appl. Phys. 37, 5367 (1998)

    Article  Google Scholar 

  16. D.K. Mahato, A. Dutta, T.P. Sinha, Bull. Mater. Sci. 34, 455 (2011)

    Article  Google Scholar 

  17. S.K. Kar, P. Kumar, Process. Appl. Ceram. 7, 181 (2013)

    Article  Google Scholar 

  18. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  19. B.C. Sutar, B. Pati, B.N. Parida, P.R. Das, R.N.P. Choudhary, J. Mater Sci. Mater. El. 24, 2043 (2013)

    Article  Google Scholar 

  20. N. Sangwong, W. Somphan, P. Thongbai, T. Yamwong, S. Meansiri, Appl. Phys. A 108, 385 (2012)

    Article  Google Scholar 

  21. J.R. Macdonald, Ann. Biomed. Eng. 20, 289 (1992)

    Article  Google Scholar 

  22. L.F. Xu, P.B. Qi, S.S. Chen, R.L. Wang, C.P. Yang, Mater. Sci. Eng. B-Adv. 177, 494 (2012)

    Article  Google Scholar 

  23. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, J. Appl. Phys. 112, 114115 (2012)

    Article  Google Scholar 

  24. S.A. Long, R.N. Blumenthal, J. Am. Ceram. Soc. 54, 577 (1971)

    Article  Google Scholar 

  25. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)

    Article  Google Scholar 

  26. K. Raman, O.P. Thakur, R.P. Tandon, Ceram. Int. 38, 3029 (2012)

    Article  Google Scholar 

  27. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  Google Scholar 

  28. W. Somphan, N. Sangwong, T. Yamwong, P. Thongbai, J. Mater. Sci. Mater. El. 23, 1229 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the scientific research funding of Shaoguan University (SY2014KJ06). The author wishes to thank Binwen Liu, Shengqian Xu for experimental supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, X. Dielectric properties and impedance characteristics of BaO–Cr2O3–Sb2O5 ceramics. J Mater Sci: Mater Electron 26, 6712–6717 (2015). https://doi.org/10.1007/s10854-015-3274-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3274-y

Keywords

Navigation