Skip to main content
Log in

Controllable growth of graphene dendrite and application to electrochemical capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of graphene dendrites with controlled morphologies (flower-like and tree-like) were achieved by changing applied potential in electrochemical reaction. The growth of graphene dendrites proceeded with two different oriented attachment modes. When applied potential ≤60 V, graphene nanosheets preferentially extended into branches, resulting in the formation of flower-like dendrites. While applied potential ≥60 V, more graphene nanosheets were produced on electrode and grew along the stem directions, leading to the formation of tree-like dendrites. Moreover, the effects of different morphology of graphene dendrite on its electrochemical performances were investigated. The results showed that tree-like dendrite electrode had a larger specific capacitance (138 F/g at 100 mv/s) than that of flower-like dendrite electrode. Generally, graphene dendrites with controlled morphologies might have promising applications as electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 306, 666 (2004)

    Article  Google Scholar 

  2. A.K. Geim, Science 324, 153 (2009)

    Article  Google Scholar 

  3. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  4. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao et al., Nano Lett. 8, 902 (2008)

    Article  Google Scholar 

  5. Z. Xu, C. Gao, ACS Nano 5, 2908 (2011)

    Article  Google Scholar 

  6. Z.L. Dong, C.C. Jiang, H.H. Cheng, Y. Zhao, G.Q. Shi, J. Lan, L.T. Qu, Adv. Mater. 24, 1856 (2012)

    Article  Google Scholar 

  7. X.C. Dong, Y.F. Cao, J. Wang, M.B. Chan-Park, L.H. Wang, W. Huang, P. Chen, RSC Adv. 2, 4364 (2012)

    Article  Google Scholar 

  8. M. Mechlenburg, A. Schuchardt, Y.K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle, K. Schulte, Adv. Mater. 24, 3486 (2012)

    Article  Google Scholar 

  9. J. Wang, M. Ellsworth, ECS Trans. 19, 241 (2009)

    Article  Google Scholar 

  10. Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, ACS Nano 4, 4324 (2010)

    Article  Google Scholar 

  11. Y.Y. Liu, D. Zhang, Y. Shang, Y. Liu, RSC Adv. 4, 30422 (2014)

    Article  Google Scholar 

  12. X. Li, X.B. Zang, Z. Li, X.M. Li, P.X. Li, P.Z. Sun et al., Adv. Funct. Mater. 23, 4862 (2013)

    Google Scholar 

  13. J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 17, 582 (2005)

    Article  Google Scholar 

  14. Y.C. Zhu, H.G. Zheng, Q. Yang, A.L. Pan, Z.P. Yang, Y.T. Qian, J. Cryst. Growth 260, 427 (2004)

    Article  Google Scholar 

  15. X.H. Liu, R. Yi, Y.T. Wang, G.Z. Qin, N. Zhang, X.G. Li, J. Phys. Chem. C 111, 163 (2007)

    Article  Google Scholar 

  16. Y.M. Tan, H.F. Wang, J. Mater. Sci. 47, 5308 (2012)

    Article  Google Scholar 

  17. L. Qin, J. Zhang, T.H. Shen, G.A. Jones, E.S. Choi, Y.J. Wang, C. Binns et al., J. Mater. Sci. 45, 1130 (2010)

    Article  Google Scholar 

  18. M. Mlambo, S. Mpelane, P.S. Mdluli, P. Mashazi, L. Sikhwivhilu, N. Moloto, M.J. Moloto, J. Mater. Sci. 48, 6418 (2013)

    Article  Google Scholar 

  19. J.E. Spinelli, A. Garcia, J. Mater. Sci. Mater. Electron. 25, 478 (2014)

    Article  Google Scholar 

  20. C. Kim, J. Oh, Y.T. Kim, H. Kim, H. Lee, Electrochem. Commun. 12, 1596 (2010)

    Article  Google Scholar 

  21. L. Wang, H. Li, J. Tian, X. Sun, ACS Appl. Mater. Interfaces 2, 2987 (2010)

    Article  Google Scholar 

  22. C. Wang, X. Han, X. Zhang, S. Hu, T. Zhang, J. Wang, Y. Du, X. Wang, P. Xu, J. Phys. Chem. C 114, 14826 (2010)

    Article  Google Scholar 

  23. Y.Y. Liu, C. Guo, D. Zhang, Y. Shang, Mater. Lett. 115, 25 (2014)

    Article  Google Scholar 

  24. J.W. Diggle, A.R. Despic, M. Bockris, J Electrochem. Soc. 116, 1503 (1969)

    Article  Google Scholar 

  25. Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Adv. Funct. Mater. 21, 2366 (2011)

    Article  Google Scholar 

  26. L. Zhang, G.Q. Shi, J. Phys. Chem. C 115, 17206 (2011)

    Article  Google Scholar 

  27. S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon 47, 145 (2009)

    Article  Google Scholar 

  28. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)

    Article  Google Scholar 

  29. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia et al., Carbon 45, 1558 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National High Technology Research and Development Program of China (No. 2012AA030303) and Basic Research Key Program of Shanghai (No. 12JC1408600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, J., Shang, Y. et al. Controllable growth of graphene dendrite and application to electrochemical capacitors. J Mater Sci: Mater Electron 26, 4337–4343 (2015). https://doi.org/10.1007/s10854-015-2989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2989-0

Keywords

Navigation