Skip to main content
Log in

Controllable decoration of CVD-grown graphene with Au NP as a promising ammonia sensing platform

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Controllable electroless deposition is proposed for Au nanoparticles (Au NPs) decorated on chemical vapor deposition growth graphene sheet (GS). This method is very simple and easy to manipulate because the redox potential difference between Cu the GS grown substrate and Au helps Au ions in precursor solution reduced to Au NPs. The coverage and size of Au NPs on GS could be controlled in range of 0–61.4 % and 30–140 nm, respectively. Three samples S1, S2 and S3 of spheric Au NPs on GS with coverage 11.5, 21.2 and 22.2 % are transferred to SAW sensor as sensing element for ammonia gas detection. The sensitivities of S1, S2 and S3 are all an order in magnitude higher than that of S0 of pristine GS for ammonia gas detection. Both recovery times and response time of S1, S2 and S3 are shorter than that of S0. The results may provide new thoughts about improving graphene based gas sensor properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Yan, Y.B. Zheng, F. Zhao, S. Li, X. Gao, B. Xu et al., Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 41, 97–114 (2012)

    Article  Google Scholar 

  2. C. Bussy, H. Ali-Boucetta, K. Kostarelos, Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc. Chem. Res. 46, 692–701 (2013)

    Article  Google Scholar 

  3. S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem. 173, 1–21 (2012)

    Article  Google Scholar 

  4. K. Anand, O. Singh, M. Singh, J. Kaur, R. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B Chem. 195, 409–415 (2014)

    Article  Google Scholar 

  5. B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, Y. Chen, All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sens. Actuators B Chem. 194, 142–148 (2014)

    Article  Google Scholar 

  6. A. Inaba, K. Yoo, Y. Takei, K. Matsumoto, I. Shimoyama, Ammonia gas sensing using a graphene field–effect transistor gated by ionic liquid. Sens. Actuators B Chem. 195, 15–21 (2014)

    Article  Google Scholar 

  7. S.S.J. Aravind, A.T.T. Baby, T. Arockiadoss, R.B. Rakhi, S. Ramaprabhu, A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets. Thin Solid Films 519, 5667–5672 (2011)

    Article  Google Scholar 

  8. M.S. Artiles, C.S. Rout, T.S. Fisher, Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliv. Rev. 63, 1352–1360 (2011)

    Article  Google Scholar 

  9. T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, Recent advances in graphene-based biosensors. Biosens. Bioelectron. 26, 4637–4648 (2011)

    Article  Google Scholar 

  10. Y. Fang, E. Wang, Electrochemical biosensors on platforms of graphene. Chem. Commun. 49, 9526–9539 (2013)

    Article  Google Scholar 

  11. S.X. Wu, Q.Y. He, C.L. Tan, Y.D. Wang, H. Zhang, Graphene-based electrochemical sensors. Small 9, 1160–1172 (2013)

    Article  Google Scholar 

  12. J. Luo, S.S. Jiang, H.Y. Zhang, J.Q. Jiang, X.Y. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012)

    Article  Google Scholar 

  13. W.B. Zhang, J.L. Chang, J.H. Chen, F. Xu, F. Wang, K. Jiang et al., Graphene–Au composite sensor for electrochemical detection of para-nitrophenol. Res. Chem. Intermed. 38, 2443–2455 (2012)

    Article  Google Scholar 

  14. Q. Tran, H. Hoa, D. Yoo, T. Cuong, S. Hur, J. Chung, E. Kim, P. Kohl, Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sens. Actuators B Chem. 194, 45–50 (2014)

    Article  Google Scholar 

  15. J.F. Wen, Y.D. Jiang, Y.J. Yang, S.B. Li, Conducting polymer and reduced graphene oxide Langmuir-Blodgett films: a hybrid nanostructure for high performance electrode applications. J. Mater. Sci. Mater. Electron. 25(2), 1063–1071 (2014)

    Article  Google Scholar 

  16. T. Qian, C. Yu, X. Zhou, S. Wu, J. Shen, Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection. Sens. Actuators B Chem. 193, 759–763 (2014)

    Article  Google Scholar 

  17. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B Chem. 178, 485–493 (2013)

    Article  Google Scholar 

  18. K.J. Huang, Y.J. Liu, H.B. Wang, T. Gan, Y.M. Liu, L.L. Wang, Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles. Sens. Actuators B Chem. 191, 828–836 (2014)

    Article  Google Scholar 

  19. M. Gautam, A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid State Electron. 78, 159–165 (2012)

    Article  Google Scholar 

  20. M.A. Uddin, A.K. Singh, T.S. Sudarshan, G. Koley, Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity. Nanotechnology 25, 125501 (2014)

    Article  Google Scholar 

  21. S.J. Guo, D. Wen, Y.M. Zhai, S.J. Dong, E.K. Wang, Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4, 3959–3968 (2010)

    Article  Google Scholar 

  22. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10, 577–583 (2010)

    Article  Google Scholar 

  23. B.S. Ryan Muszynski, Prashant V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112(14), 5263–5266 (2008)

    Article  Google Scholar 

  24. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet Surface. Nano Lett. 9, 2255–2259 (2009)

    Article  Google Scholar 

  25. T.T. Baby, S.S.J. Aravind, T. Arockiadoss, R.B. Rakhi, S. Ramaprabhu, Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B Chem. 145, 71–77 (2010)

    Article  Google Scholar 

  26. C.B. Wen, C.C. Zhu, A novel architecture of implementing wavelet transform and reconstruction processor with SAW device based on MSC. Sens. Actuators A 126, 148–153 (2006)

    Article  Google Scholar 

  27. Y. Wu, X. Li, J.H. Liu, Y.N. He, L.M. Yu, W.H. Liu, ZnO nanomaterials based surface acoustic wave ethanol gas sensor. J. Nanosci. Nanotechnol. 12, 6505–6509 (2012)

    Article  Google Scholar 

  28. S.M. Cui, S. Mao, G.H. Lu, J.H. Chen, Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J. Phys. Chem. Lett. 4, 2441–2454 (2013)

    Article  Google Scholar 

  29. S.M. Cui, S. Mao, Z.H. Wen, J.B. Chang, Y. Zhang, J.H. Chen, Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 138, 2877–2882 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grants from the National Natural Science Foundation of China (Nos. 91123018, 61172040, 61172041), Shaanxi Natural Science Foundation (2014JM7277) and the Fundamental Research Funds for the Central Universities.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, Y., Song, H. et al. Controllable decoration of CVD-grown graphene with Au NP as a promising ammonia sensing platform. J Mater Sci: Mater Electron 26, 1500–1506 (2015). https://doi.org/10.1007/s10854-014-2567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2567-x

Keywords

Navigation