Skip to main content
Log in

Low-temperature acetone-assisted hydrothermal synthesis and characterization of BiFeO3 powders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well-crystallized pure perovskite bismuth ferrite (BiFeO3) powders have been synthesized by a facile hydrothermal route at the temperature as low as 130 °C with the aid of acetone. In the synthesis, acetone played important roles in the low-temperature synthesis of pure BiFeO3. The as-prepared BiFeO3 powders mainly consisted of cubic particles with the size range from 50 to 200 nm. zero-field-cooled and field-cooled magnetization measurements indicated that pure BiFeO3 powders showed a spin-glass transition below the freezing temperature. The as-prepared pure BiFeO3 powders showed weak ferromagnetism and ferroelectricity simultaneously at room temperature. Moreover, the bismuth ferrite BiFeO3 exhibit efficient photocatalytic activity under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, Science 309, 391–392 (2005)

    Article  Google Scholar 

  2. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  3. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano lett. 7, 766–772 (2007)

    Article  Google Scholar 

  4. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889–2892 (2007)

    Article  Google Scholar 

  5. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  6. T.T. Carvalho, P.B. Tavares, Mater. Lett. 62, 3984–3986 (2008)

    Article  Google Scholar 

  7. G. Biasotto, A.Z. Simo˜es, C.R. Foschini, M.A. Zaghete, J.A. Varela, E. Longo, Mater. Res. Bull. 46, 2543–2547 (2011)

    Article  Google Scholar 

  8. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764–2766 (2000)

    Article  Google Scholar 

  9. S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N.V. Giridharan, B. Karthikeyan, R. Justin Joseyphus, S. Dhanuskodi, J. Alloys Compd. 493, 569–572 (2010)

    Article  Google Scholar 

  10. M.B. Bellakki, V. Manivannan, J. Mater. Sci. 45, 1137–1142 (2010)

    Article  Google Scholar 

  11. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, J. Am. Ceram. Soc. 88, 1349–1352 (2005)

    Article  Google Scholar 

  12. N. Das, R. Majumdar, A. Sen, H.S. Maiti, Mater. Lett. 61, 2100–2104 (2007)

    Article  Google Scholar 

  13. J.K. Kim, S.S. Kim, W.J. Kim, Mater. Lett. 59, 4006–4009 (2005)

    Article  Google Scholar 

  14. X.Z. Chen, Z.C. Qiu, J.P. Zhou, G.Q. Zhu, X.B. Bian, P. Liu, Mater. Chem. Phys. 126, 560–567 (2011)

    Google Scholar 

  15. C. Chen, J.R. Cheng, S.W. Yu, L.J. Che, Z.Y. Meng, J. Cryst. Growth 291, 135–139 (2006)

    Article  Google Scholar 

  16. Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han, J. Am. Ceram. Soc. 90, 3673–3675 (2007)

    Article  Google Scholar 

  17. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203a (2005)

    Article  Google Scholar 

  18. A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, P. Poddar, J. Phys. Chem. C 114, 2108–2115 (2010)

    Article  Google Scholar 

  19. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  Google Scholar 

  20. C.D. Wagner (ed.), Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Minnesota, 1979)

    Google Scholar 

  21. H. Zhang, Y.J. Ji, X.Y. Ma, J. Xu, D.R. Yang, Nanotechnology 14, 974–979 (2003)

    Article  Google Scholar 

  22. M.R. Joung, I.T. Seo, I.T. Seo, J.S. Kim, J.H. Choi, T.H. Sung, Jpn. J. Appl. Phys. 50, 035002 (2011)

    Article  Google Scholar 

  23. J. Wei, C. Zhang, Z. Xu, Mater. Res. Bull. 47, 3513–3517 (2012)

    Article  Google Scholar 

  24. Z.H. Yang, J. Xu, W.X. Zhang, A.P. Liu, S.P. Tang, J. Solid State Chem. 180, 1390–1396 (2007)

    Article  Google Scholar 

  25. K.Y. Chen, Y.W. Chen, J. Mater. Sci. 40, 991–998 (2005)

    Article  Google Scholar 

  26. S. Basu, S.K.M. Hossain, D. Chakravorty, M. Pal, Curr. Appl. Phys. 11, 976–980 (2011)

    Article  Google Scholar 

  27. S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Appl. Phys. Lett. 87, 262907 (2005)

    Article  Google Scholar 

  28. J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghmare, N. Spaldin, K. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)

    Article  Google Scholar 

  29. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Appl. Phys. Lett. 89, 102506 (2006)

    Article  Google Scholar 

  30. J. Wei, D.S. Xue, Y. Xu, Scr. Mater. 58, 45–48 (2008)

    Article  Google Scholar 

  31. J.T. Wu, S.Y. Mao, Z.G. Ye, Z.X. Xie, L.S. Zheng, J. Mater. Chem. 20, 6512–6516 (2010)

    Google Scholar 

  32. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628–1630 (2002)

    Article  Google Scholar 

  33. D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, G. Sharma, Nanoscale 2, 1149–1154 (2012)

    Article  Google Scholar 

  34. W.W. Hu, Y. Chen, H.M. Yuan, G.H. Li, Y. Qian, Y.Y. Qin, S.H. Feng, J. Phys. Chem. C 115, 8869–8875 (2011)

    Article  Google Scholar 

  35. C.M. Cho, J.H. Noh, I.S. Cho, J.S. An, K.S. Hong, J.Y. Kim, J. Am. Ceram. Soc. 91, 3753–3755 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by National Natural Science Foundation of China (No. 50702022), the Fundamental Research Funds for the Central Universities, SCUT (Nos. x2clD2115100; 2009ZM0015) and Produce-learn-research Projects of Guangdong Province-the Ministry of Education (No. 2012B091100393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Jin, W. Low-temperature acetone-assisted hydrothermal synthesis and characterization of BiFeO3 powders. J Mater Sci: Mater Electron 25, 4039–4045 (2014). https://doi.org/10.1007/s10854-014-2126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2126-5

Keywords

Navigation