Skip to main content
Log in

Growth and characterization of La5/8Sr3/8MnO3 thin films prepared by pulsed laser deposition on different substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Colossal magnetoresistance La5/8Sr3/8MnO3 (LSMO) thin films were directly grown on MgO(100), Si(100) wafer and glass substrates by pulsed laser deposition technique. The films were characterized using X-ray diffraction (XRD), field emission-scanning electron microscope and atomic force microscopy (AFM). The electrical and magnetic properties of the films are studied. From the XRD patterns, the films are found to be polycrystalline single-phases. The surface appears porous and cauliflower-like morphology for all LSMO films. From AFM images, the LSMO films deposited on glass substrate were presented smooth morphologies of the top surfaces as comparing with the films were deposited on Si(100) and MgO(100). The highest magnetoresistance (MR) value obtained was −17.21 % for LSMO/MgO film followed by −15.65 % for LSMO/Si and −14.60 % for LSMO/Cg films at 80 K in a 1T magnetic field. Phase transition temperature (TP) is 224 K for LSMO/MgO, 200 K for LSMO/Si and above room temperature for films deposited on glass substrates. The films exhibit ferromagnetic transition at a temperature (TC) around 363 K for LSMO/MgO, 307 K for LSMO/Si and 352 K for LSMO/Cg thin film. TC such as 363 and 352 K are the high TC that has ever been reported for LSMO films deposited on MgO substrate with high lattice mismatch parameter and glass substrates with amorphous nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Pan, S. Halim, K. Lim, W. Daud, S. Chen, M. Navasery, J. Mater. Sci. Mater. Electron. 24, 1869–1874 (2013)

    Google Scholar 

  2. Y. Xu, U. Memmert, U. Hartmann, Sens. Actuators A Phys. 91, 26–29 (2001)

    Article  Google Scholar 

  3. M. Navasery, S.A. Halim, K.P. Lim, S.K. Chen, R. Abd-Shukor, Mod. Phys. Lett. B 26, 1150039–1150048 (2012)

    Article  Google Scholar 

  4. M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)

    Article  Google Scholar 

  5. S.S. Balevičius, S. Keršulis, M. Schneider, O. Liebfried, V. Plaušinaitienė, A. Abrutis, IEEE Trans. Plasma Sci. 39, 411–416 (2011)

    Article  Google Scholar 

  6. D. Liu, W. Liu, Ceram. Int. 38, 2579–2581 (2012)

    Article  Google Scholar 

  7. Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, S. Katano, Phys. Rev. Lett. 77, 904–907 (1996)

    Article  Google Scholar 

  8. A. Ramirez, J. Phys. Condens. Matter 9, 8171 (1997)

    Article  Google Scholar 

  9. D. Liu, W. Liu, Ceram. Int. 37, 3531–3534 (2011)

    Article  Google Scholar 

  10. D. Sahu, J. Phys. Chem. Solids 73, 622–625 (2012)

    Article  Google Scholar 

  11. X. Zhu, H. Shen, K. Tsukamoto, T. Yanagisawa, M. Okutomi, N. Higuchi, Ceram. Int. 38, 6405–6410 (2012)

    Article  Google Scholar 

  12. Z. Yang, L. Sun, C. Ke, X. Chen, W. Zhu, O. Tan, J. Cryst. Growth 311, 3289–3294 (2009)

    Article  Google Scholar 

  13. S. Seo, H. Kang, H. Jang, D. Noh, Phys. Rev. B 71, 012412–012415 (2005)

    Article  Google Scholar 

  14. T. Tsuchiya, K. Daoudi, T. Manabe, I. Yamaguchi, T. Kumagai, Appl. Surf. Sci. 253, 6504–6507 (2007)

    Article  Google Scholar 

  15. Y. Jiang, G. Gao, Y. Wang, H. Chan, Solid State Commun. 150, 2028–2031 (2010)

    Article  Google Scholar 

  16. M. Spankova, S. Chromik, I. Vavra, K. Sedlackova, P. Lobotka, S. Lucas, S. Stancek, Appl. Surf. Sci. 253, 7599–7603 (2007)

    Article  Google Scholar 

  17. R. Gangineni, J. Kim, K. Nenkov, L. Schultz, J. Magn. Magn. Mater. 324, 1151–1153 (2012)

    Article  Google Scholar 

  18. Z.P. Shaojie Fang, F. Wang, L. Lin, S. Han, J. Mater. Sci. Technol. 27, 223–226 (2011)

    Article  Google Scholar 

  19. D. Sahu, J. Phys. Chem. Solids 73, 622–625 (2012)

    Article  Google Scholar 

  20. D. Sahu, D. Mishra, J.L. Huang, B. Roul, Phys. B 396, 75–80 (2007)

    Article  Google Scholar 

  21. D.R. Sahu, Appl. Surf. Sci. 255, 1870–1873 (2008)

    Article  Google Scholar 

  22. S. Yang, W. Kuang, Y. Liou, W. Tse, S. Lee, Y. Yao, J. Magn. Magn. Mater. 268, 326–331 (2004)

    Article  Google Scholar 

  23. L. Martin, Y.H. Chu, R. Ramesh, Mater. Sci. Eng. R Rep. 68, 89–133 (2010)

    Article  Google Scholar 

  24. S.Y. Pai Li, L. Liu, X. Wang, Y. Wang, Z. Tian, J. He, K.L. Shijun Yuan, S. Ying, C. Wang, Solid State Commun. 146, 515–521 (2008)

    Google Scholar 

  25. X. Zhu, H. Shen, K. Tsukamoto, T. Yanagisawa, M. Okutomi, N. Higuchi, Ceram. Int. 38, 6405–6410 (2012)

    Article  Google Scholar 

  26. P.M. Leufke, A.B. Ajay Kumar Mishra, Di. Wang, Christian. Kübel, Robert. Kruk, Horst. Hahn, Thin Solid Films 520, 5521–5527 (2012)

    Article  Google Scholar 

  27. I. Gomes, B. Almeida, A. Lopes, J. Araújo, J. Barbosa, J. Mendes, J. Magn. Magn. Mater. 322, 1174–1177 (2010)

    Article  Google Scholar 

  28. M. Sirenaa, M.G.N. Haberkorna, L.B. Steren, J. Guimpel, J. Magn. Magn. Mater. 272–276, 1171–1173 (2004)

    Article  Google Scholar 

  29. S. Majumdar, H.S.M.H. Huhtinen, P. Paturi, J. Alloy. Compd. 512, 332–339 (2012)

    Article  Google Scholar 

  30. J.H. Hongwei Qin, J. Chen, L. Zhu, H. Niu, Mater. Trans. 45, 1251–1254 (2004)

    Article  Google Scholar 

  31. D.R. Sahu, J. Phys. Chem. Solids 73, 622–625 (2012)

    Article  Google Scholar 

  32. S.A.H.M. Navasery, N. Soltani, G. Bahmanrokh, A. Dehzangi, M. Erfani, A. Kamalianfar, S.K. Chen, K.Y. Pan, Int. J. Electrochem. Sci. 8, 467–476 (2013)

    Google Scholar 

  33. S.A.H.M. Navasery, G. Bahmanrokh, M. Erfani, N. Soltani, A. Dehzangi, F.U.D.A. Kamalianfar, S. Abdolmohammadi, S.K. Chen, K.P. Lim, L.A. Mehdipour, A. Anuar, Int. J. Electrochem. Sci. 8, 6905–6921 (2013)

    Google Scholar 

Download references

Acknowledgments

The Ministry of Science, Technology and Innovation of Malaysia is gratefully acknowledged for the grant under Science Fund vote: 5527047.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Navasery or S. A. Halim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navasery, M., Halim, S.A., Soltani, N. et al. Growth and characterization of La5/8Sr3/8MnO3 thin films prepared by pulsed laser deposition on different substrates. J Mater Sci: Mater Electron 25, 1317–1324 (2014). https://doi.org/10.1007/s10854-014-1729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1729-1

Keywords

Navigation