Skip to main content
Log in

Effects of annealing on the structural properties of indium rich InGaN films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium rich (In-rich) InGaN films were grown on Ge (111) substrate by plasma assisted molecular beam epitaxy with thin GaN as a buffer layer. The effects of annealing temperature and annealing time on the structural properties of In-rich InGaN films were investigated by X-ray diffraction (XRD). XRD results indicate that the as-grown InGaN films annealed at different temperatures for 1 min and 1 h respectively did not improve the film crystalline quality. But with the annealing at 750 °C and 800 °C for 1 min respectively the metallic indium was desorbed from the InGaN structure. The InGaN films annealed at higher than 660 °C for 1 h also showed the indium desorption. The InGaN film has the best film quality after annealed at 660 °C for 6 h with the full-width at half-maximum of InGaN (002) peak to be 879 arcsec. The InGaN crystalline quality started to degrade after annealed at the temperatures higher than 660 °C for 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Nakamura, J. Cryst. Growth 201–202, 290–295 (1999)

    Article  Google Scholar 

  2. Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang, S.C. Shei, C.W. Kuo, S.C. Chen, Solid-State Electron. 47, 849–853 (2003)

    Article  Google Scholar 

  3. G.F. Brown, J.W. Ager III, W. Walukiewicz, J. Wu, Sol. Energy Mat. Sol. Cells 94, 478–483 (2010)

    Article  Google Scholar 

  4. C.L. Tsai, G.S. Liu, G.C. Fan, Y.S. Lee, Solid-State Electron. 54, 541–544 (2010)

    Article  Google Scholar 

  5. J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 93, 162107 (2008)

    Article  Google Scholar 

  6. R. Memming, Electrochim. Acta 25, 77–88 (1980)

    Article  Google Scholar 

  7. D.V.P. McLaughlin, J.M. Pearce, Metall. Mater. Trans. A 44, 1947–1954 (2013)

    Article  Google Scholar 

  8. M.A. Herman, Molecular Beam Epitaxy: Fundamentals and Current Status. (Springer, Berlin, 1996)

  9. S.C. Bayliss, P. Demeester, I. Fletcher, R.W. Martin, P.G. Middleton, I. Moerman, K.P. O’Donnell, A. Sapelkin, C. Trager-Cowan, W. Van Der Stricht, C. Young, Mater. Sci. Eng B Adv. 59, 292–297 (1999)

    Article  Google Scholar 

  10. Z.Z. Chen, Z.X. Qin, X.D. Hu, T.J. Yu, Z.J. Yang, Y.Z. Tong, X.M. Ding, G.Y. Zhang, Phys. B 344, 292–296 (2004)

    Article  Google Scholar 

  11. K. Poochindaa, T.C. Chenb, T.G. Stoebe, N.L. Ricker, J. Cryst. Growth 272, 460 (2004)

    Article  Google Scholar 

  12. S.H. Cho, H. Okumura, J. Cryst. Growth 209, 401–405 (2000)

    Article  Google Scholar 

  13. F.B. Naranjo, S. Fernandez, M.A. Sanchez-Garcia, F. Calle, E. Calleja, A. Trampert, K.H. Ploog, Mater. Sci. Eng B Adv. 93, 131–134 (2002)

    Article  Google Scholar 

  14. Z.C. Feng, W. Liu, S.J. Chua, J.W. Yu, C.C. Yang, T.R. Yang, J. Zhao, Thin Solid Films 498, 118–122 (2006)

    Article  Google Scholar 

  15. Y. Guo, X.L. Liu, H.P. Song, A.L. Yang, X.Q. Xu, G.L. Zheng, H.Y. Wei, S.Y. Yang, Q.S. Zhu, Z.G. Wang, Appl. Surf. Sci. 256, 3352–3356 (2010)

    Article  Google Scholar 

  16. C.A. Tran, R.F. Karlicek Jr, M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M.G. Brown, J. Nering, I. Ferguson, R. Stall, J. Cryst. Growth 195, 397–400 (1998)

    Article  Google Scholar 

  17. E. Matioli, C. Neufeld, M. Iza, S.C. Cruz, A.A. Al-Heji, X. Chen, R.M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, C. Weisbuch, Appl. Phys. Lett. 98, 021102 (2011)

    Article  Google Scholar 

  18. L.A. Reichertz, I. Gherasoiu, K.M. Yu, V.M. Kao, W. Walukiewicz, J.W. Ager, Appl. Phys. Express 2, 122202 (2009)

    Article  Google Scholar 

  19. H.J. Kim, Y. Shin, S.-Y. Kwon, H.J. Kim, S. Choi, S. Hong, C.S. Kim, J.-W. Yoon, H. Cheong, E. Yoon, J. Cryst. Growth 310, 3004–3008 (2008)

    Article  Google Scholar 

  20. Y. Huang, A. Melton, B. Jampana, M. Jamil, J.-H. Ryou, R.D. Dupuis, I.T. Ferguson, J. Appl. Phys. 110, 064908 (2011)

    Article  Google Scholar 

  21. B. Wilsch, U. Jahn, B. Jenichen, J. Lähnemann, H.T. Grahn, H. Wang, H. Yang, Appl. Phys. Lett. 102, 052109 (2013)

    Article  Google Scholar 

  22. J.W. Ager III, N. Miller, R.E. Jones, K.M. Yu, J. Wu, W.J. Schaff, W. Walukiewicz, Phys. Status Solidi B 245, 873–877 (2008)

    Article  Google Scholar 

  23. R.R. Lieten, S. Degroote, K. Cheng, M. Leys, M. Kuijk, G. Borgh, Appl. Phys. Lett. 89, 252118 (2006)

    Article  Google Scholar 

  24. E. Trybus, G. Namkoong, W. Henderson, W.A. Doolittle, R. Liu, J. Mei, F. Ponce, M. Cheung, F. Chen, M. Furis, A. Cartwright, J. Cryst. Growth 279, 311–315 (2005)

    Article  Google Scholar 

  25. R.R. Lieten, S. Degroote, M. Kuijk, G. Borghs, Appl. Phys. Lett. 91, 222110 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Bao Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, QB., Lieten, R. & Borghs, G. Effects of annealing on the structural properties of indium rich InGaN films. J Mater Sci: Mater Electron 25, 1197–1201 (2014). https://doi.org/10.1007/s10854-014-1709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1709-5

Keywords

Navigation