Skip to main content
Log in

Frequency and temperature dependence dielectric behavior of barium zirconate titanate nanocrystalline powder obtained by mechanochemical synthesis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline barium zirconium titanate ceramic has been synthesized by high-energy ball milling. This nano-ceramic is characterized by X-ray diffraction, scanning electron microscopy, dielectric study and impedance spectroscopy. The X-ray diffraction pattern shows single phase ceramic of tertragonal symmetry with space group P4 mm. Temperature and frequency dependent dielectric study of the sample shows a normal ferroelectric phase transition behavior. Impedance spectroscopy analyses reveal a non-Debye type relaxation phenomenon. A significant shift in impedance loss peaks toward higher frequency side indicates conduction in material and favoring the long range motion of mobile charge carriers. Grain and grain boundary conduction is observed from complex impedance spectrum by the appearance of two semicircular arcs in the Nyquist plot. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The variation of dc conductivity exhibited a negative temperature coefficient of resistance behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.E. Cross, Mater. Chem. Phys. 43, 108 (1996)

    Article  CAS  Google Scholar 

  2. H. Maiwa, Jpn. J. Appl. Phys. 46, 7013 (2007)

    Article  CAS  Google Scholar 

  3. F.T. Du, P.F. Yu, B. Cui et al., J. Alloys Compd. 478(1–2), 620–623 (2009)

    Article  CAS  Google Scholar 

  4. W. Li, Z.J. Xu, R.Q. Chu et al., J. Alloys Compd. 482(1–2), 137–140 (2009)

    Article  CAS  Google Scholar 

  5. B. Cui, P.F. Yu, X. Wang, J. Alloys Compd. 459(1–2), 589–593 (2008)

    Article  CAS  Google Scholar 

  6. J.B. Xu, J.W. Zhai, X. Yao, J. Alloys Compd. 467(1–2), 567–571 (2009)

    Article  CAS  Google Scholar 

  7. Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000)

    Article  CAS  Google Scholar 

  8. J. Zhao, L. Li, Y. Wang, Z. Gui, Mater. Sci. Eng. B 99, 207 (2003)

    Article  Google Scholar 

  9. B.D. Stojanovic, C.R. Foschini, V.B. Pavlovic, V.M. Pablovic, V. Pejovic, J.A. Varela, Ceram. Int. 28, 293 (2002)

    Article  CAS  Google Scholar 

  10. P.W. Rehrig, S.E. Park, S.T. McKinstry, G.L. Messing, B. Jones, T.M. Shrout, J. Appl. Phys. 86, 1657 (1999)

    Article  CAS  Google Scholar 

  11. Y. Zhi, R. Guo, A.S. Bhalla, J. Cryst. Growth 233, 460 (2001)

    Article  CAS  Google Scholar 

  12. Y. Zhi, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000)

    Article  Google Scholar 

  13. A.Q. Jiang, H.G. Li, L.D. Zhang, J. Appl. Phys. 83, 4878 (1998)

    Article  CAS  Google Scholar 

  14. L.B. Kong, W. Zhu, O.K. Tan, Mater. Lett. 42, 232 (2000)

    Article  CAS  Google Scholar 

  15. R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)

    Google Scholar 

  16. J. Wang, J.M. Xue, D.M. Wan, B.K. Gan, J. Solid State Chem. 154, 321 (2000)

    Article  CAS  Google Scholar 

  17. J.R.R. Siqueira, A.Z. Simões, B.D. Stojanovic, C.O. Paiva-Santos, L.P.S. Santos, E. Longo, J.A. Varela, Ceram. Int. 33, 937 (2007)

    Article  CAS  Google Scholar 

  18. K. Tkacova, Mechanical Activation of Minerals (Elsevier, Amsterdam, 1989)

    Google Scholar 

  19. Joint Committee on Powder Diffraction Standards, Diffraction data file, no. 44-0093, International Centre for Diffraction Data (ICDD, formerly JCPDS), (Newtown Square, 2001)

  20. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Application (Wily, London, 2003)

    Google Scholar 

  21. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  CAS  Google Scholar 

  22. A. Kyritsis, P. Pissis, J. Grammatikakis, J. Polym. Sci. Polym. Phys. 33, 1737 (1995)

    Article  CAS  Google Scholar 

  23. S. Mahajan, D. Haridas, K. Sreenivas, O.P. Thakur, C. Prakash, Mater. Lett. 97(15), 40 (2013)

    Google Scholar 

  24. X.G. Tang, K.-H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)

    Article  CAS  Google Scholar 

  25. F. Moura, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longo, J.A. Varela, J. Alloys Compd. 462, 129 (2008)

    Article  CAS  Google Scholar 

  26. N. Sawangwan, J. Barrel, K. Mackenzie, T. Tunkasiri, Appl. Phys. A 90, 723 (2008)

    Article  CAS  Google Scholar 

  27. T.J.B. Holland, S.A.T. Redfern, Mineral. Mag. 61, 65 (1997)

    Article  CAS  Google Scholar 

  28. J.T.C. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 138 (1990)

    Article  Google Scholar 

  29. J. Plocharski, W. Wieczoreck, Solid State Ionics 979, 28 (1988)

    Google Scholar 

  30. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  CAS  Google Scholar 

  31. A. Lasia, Electrochemical impedance spectroscopy and it’s applications, in Modern Aspects of Electrochemistry, vol. 32, ed. by B.E. Conway, J.O.M. Bockris, R.E. White (Kluwer Academic/Plenum Publishers, New York, 1999), pp. 143–248

    Chapter  Google Scholar 

  32. M. Guillodo, J. Fouletier, L. Dessemond, P. Del Gallo, J. Eur. Ceram. Soc. 21, 2331 (2001)

    Article  CAS  Google Scholar 

  33. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 81, 451 (2002)

    Article  CAS  Google Scholar 

  34. C. Leon, M.L. Lucia, J. Santamaria, Phys. Rev. B 55, 882 (1997)

    Article  CAS  Google Scholar 

  35. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 74, 125 (1976)

    Article  CAS  Google Scholar 

  36. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  CAS  Google Scholar 

  37. L.P. Curecheriu, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, P. Postolache, A. Ianculescu, P. Nanni, J. Appl. Phys. 107, 104106 (2010)

    Article  Google Scholar 

  38. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid State Material and Systems, chap. 2 and 4 (Wiley, New York, 1987)

    Google Scholar 

  39. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    CAS  Google Scholar 

  40. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  41. A.K. Jonscher, Nature (London) 267, 673 (1977)

    Article  CAS  Google Scholar 

  42. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. 108, 034101 (2010)

    Article  Google Scholar 

  43. A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998)

    Article  CAS  Google Scholar 

  44. N.F. Mott, Metal Insulator Transitions (Taylor and Francis, London, 1990)

    Google Scholar 

  45. C. Verdier, F.D. Morrison, D.C. Lupascu, J.F. Scott, J. Appl. Phys. 97, 024107 (2005)

    Article  Google Scholar 

  46. D.M. Smyth, J. Electroceram. 11, 89 (2003)

    Article  CAS  Google Scholar 

  47. R. Moos, K.H. Härdtl, J. Appl. Phys. 80, 393 (1996)

    Article  CAS  Google Scholar 

  48. H. Ihrig, D. Hennings, Phys. Rev. B 17, 4593 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Badapanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarangi, S., Badapanda, T., Behera, B. et al. Frequency and temperature dependence dielectric behavior of barium zirconate titanate nanocrystalline powder obtained by mechanochemical synthesis. J Mater Sci: Mater Electron 24, 4033–4042 (2013). https://doi.org/10.1007/s10854-013-1358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1358-0

Keywords

Navigation