Skip to main content
Log in

Reaction mechanism and kinetics analysis of the phase transformation of TiO2 from the anatase phase to the rutile phase

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The kinetic mechanism of the phase transformation of TiO2 from the anatase phase to the rutile phase was investigated. TiO2 powders were prepared with different pH value of the starting solution via the thermal hydrolysis method in this study. The pH values of the starting solutions have significant effects on the phase transformation temperatures of the thermal hydrolysis reaction. As the reaction temperatures were raised, the conversion from the anatase phase to the rutile phase was increased. A core–shell morphology of the prepared TiO2 samples was suggested via the signals of the anatase phase and the rutile phase in UV–vis spectrum analysis. Through the isothermal heating process of the reaction kinetics, the controlling reaction in the phase transformation process from the anatase phase to the rutile phase was determined to be the three-dimensional phase boundary controlled process. The activation energy of the phase transformation was increased with an increase in the pH value of the starting solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.B. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. B 102, 10871 (1998)

    Article  CAS  Google Scholar 

  2. C.-H. Lu, W.-H. Wu, R.B. Kale, J. Hazard. Mater. 154, 649 (2008)

    Article  CAS  Google Scholar 

  3. X. Wang, X. Xue, Q. Li, M. Zhang, J. Yang, Mater. Lett. 88, 79 (2012)

    Article  CAS  Google Scholar 

  4. B. Oregan, M. Gratzel, Nature 353, 737 (1991)

    Article  CAS  Google Scholar 

  5. M. Guo, K. Xie, J. Lin, Z. Yong, C.T. Yip, L. Zhou, Y. Wang, H. Huang, Energy Environ. Sci. 5, 9881 (2012)

    Article  CAS  Google Scholar 

  6. W.Yang, F.Wan, Y.Wang, C.Jiang, Appl. Phys. Lett. 95, (2009)

  7. C. Natarajan, G. Nogami, J. Electrochem. Soc. 143, 1547 (1996)

    Article  CAS  Google Scholar 

  8. C.N. Rao, S.R. Yoganarasimhan, P.A. Faeth, Trans. Faraday Soc. 57, 504 (1961)

    Article  CAS  Google Scholar 

  9. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  CAS  Google Scholar 

  10. C. Su, B.Y. Hong, C.M. Tseng, Catal. Today 96, 119 (2004)

    Article  CAS  Google Scholar 

  11. J.G. Li, T. Ishigaki, Acta Mater. 52, 5143 (2004)

    Article  CAS  Google Scholar 

  12. K.J.D. Mackenzie, Trans. J. Br. Ceram. Soc. 74, 29 (1975)

    CAS  Google Scholar 

  13. C.N.R. Rao, A. Turner, J.M. Honig, J. Phys. Chem. Solids 11, 173 (1959)

    Article  CAS  Google Scholar 

  14. J.A. Gamboa, D.M. Pasquevich, J. Am. Ceram. Soc. 75, 2934 (1992)

    Article  CAS  Google Scholar 

  15. S.C. Liao, W.E. Mayo, K.D. Pae, Acta Mater. 45, 4027 (1997)

    Article  CAS  Google Scholar 

  16. A.A. Gribb, J.F. Banfield, Am. Miner. 82, 717 (1997)

    CAS  Google Scholar 

  17. N.R. Neale, A.J. Frank, J. Mater. Chem. 17, 3216 (2007)

    Article  CAS  Google Scholar 

  18. Y. Hu, H.L. Tsai, C.L. Huang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 344, 209 (2003)

    Article  Google Scholar 

  19. S. Mahshid, M. Askari, M.S. Ghamsari, Int. J. Nanotechnol. 6, 961 (2009)

    Article  CAS  Google Scholar 

  20. H.Z. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)

    Article  CAS  Google Scholar 

  21. A. Suzuki, R. Tukuda, Bull. Chem. Soc. Jpn. 42, 1853 (1969)

    Article  CAS  Google Scholar 

  22. G. Madras, B.J. McCoy, A. Navrotsky, J. Am. Ceram. Soc. 90, 250 (2007)

    Article  CAS  Google Scholar 

  23. S. Riyas, P.N.M. Das, Br. Ceram. Trans. 103, 23 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hsin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, JS., Wen, MC. & Lu, CH. Reaction mechanism and kinetics analysis of the phase transformation of TiO2 from the anatase phase to the rutile phase. J Mater Sci: Mater Electron 24, 2506–2512 (2013). https://doi.org/10.1007/s10854-013-1125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1125-2

Keywords

Navigation