Skip to main content
Log in

Structural, dielectric and electrical properties of dysprosium based new complex electroceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline sample of K2Pb2Dy2W2Ti4Nb4O30 was synthesized by high—temperature solid—state reaction method (calcinations temperature ~1,050 °C and sintering temperature ~1,075 °C). The phase formation of the desired compound was confirmed by preliminary X-ray structural analysis. The scanning electron micrograph shows uniform plate and rod like grain distribution throughout the surface of the sample without much pores. Detailed studies of the nature of (1) variation of dielectric parameters with temperature (27–480 °C) and frequency (1 kHz–5 MHz) and (2) polarization (at three different temperatures) confirmed the existence of ferroelectricity in the material, with phase transition occurring at 316 °C. The temperature dependence of electrical parameters (impedance, modulus, conductivity, etc.) of the material exhibits a strong correlation between its micro-structure (i.e., bulk, grain boundary, etc.) and electrical properties. The nature of temperature dependent dc conductivity follows the Arrhenius equation, and reveals the negative temperature coefficient of resistance (NTCR) behaviour of the material. The material obeys Jonscher’s universal power law which is evident from the graphs of frequency dependence of ac conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z. Yang, L. Fang, L. Liu, C. Hu, X. Chen, H. Zhou, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-011-0391-0

  2. K. Chandramouli, P. Viswarupachary, K. Ramam, J. Mater. Sci. 20, 977 (2009)

    CAS  Google Scholar 

  3. L. Fang, H. Zhang, T.H. Huang, R.Z. Yuan, H.X. Liu, J. Mater. Sci. 40(2), 533–535 (2005)

    Article  CAS  Google Scholar 

  4. P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, J. Mater. Sci. 21, 160 (2010)

    CAS  Google Scholar 

  5. V. Hornebecq, C. Elissalde, J.M. Reau, J. Ravez, Ferroelectrics 238(1), 57–63 (2000)

    Article  Google Scholar 

  6. L.-X. Pang, H. Wang, D. Zhou, W.H. Liu, Mater. Chem. Phys. 123(2–3), 727–730 (2010)

    Article  CAS  Google Scholar 

  7. S. Kamba, S. Veljko, M. Kempa, M. Savinov, V. Bovtun, P. Vanek, J. Petzelt, M.C. Stennelt, I.M. Reaney, A.R. West, J. Electro. Chem. Soc. 25, 3069–3073 (2005)

    CAS  Google Scholar 

  8. P.R. Das, R.N.P. Choudhary, B.K. Samantray, Mater. Chem. Phys. 101(1), 228–233 (2007)

    Article  CAS  Google Scholar 

  9. P.R. Das, R.N.P. Choudhary, B.K. Samantray, J. Alloys. Comp 448(1–2), 32–37 (2008)

    Article  CAS  Google Scholar 

  10. P.R. Das, R.N.P. Choudhary, B.K. Samantray, J. Phys. Chem. Solids 68(4), 516–522 (2007)

    Article  CAS  Google Scholar 

  11. P.R. Das, B. Behera, R.N.P. Choudhary, B.K. Samantray, Res. Lett. Mat. Sci. 1–5 (2007), Article ID 91796

  12. P.R. Das, L. Biswal, B. Behera, R.N.P. Choudhary, Mater. Res. Bull. 44(6), 1214–1218 (2009)

    Article  CAS  Google Scholar 

  13. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. doi:10.1007/s10854-011-0492-9

  14. P. Ganguly, A.K. Jha, Int. Ferroelectr. 115(1), 149–156 (2010)

    Article  CAS  Google Scholar 

  15. P. Ganguly, S. Jain, S. Devi, A.K. Jha, Ferroelectrics 381(1), 152–159 (2009)

    Article  Google Scholar 

  16. P. Ganguly, A.K. Jha, J. Am. Ceram. Soc. 94(6), 1725–1730 (2011)

    Article  CAS  Google Scholar 

  17. M. Bouziane, M. Taibi, A. Boukhari, Mat. Chem. Phy. 129(3), 673–677 (2011)

    Article  CAS  Google Scholar 

  18. P.S. Sahoo, M.P.K. Sahoo, R.N.P. Choudhary, J. Mater. Sci. doi:10.1007/s10854-011-0590-8

  19. H.P. Klug, L.E. Alexander, X-Ray Diffraction, vol. 966 (Wiley Chester, England, 1974)

  20. POWD E W, An interactive powder diffraction data interpretation and indexing Program, Ver 2.1, School of Physical Science, Finders University of South Australia, Bedford Park, S.A. 5042, Australia

  21. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73(10), 3122–3125 (1990)

    Article  CAS  Google Scholar 

  22. L.E. Cross, Ferroelectrics 76, 241–267 (1987)

    Article  CAS  Google Scholar 

  23. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557–5562 (2003)

    Article  CAS  Google Scholar 

  24. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 395(1–2), 98–103 (2007)

    Article  CAS  Google Scholar 

  25. J.R. Macdonald, Solid State Ion. 13(2), 147–149 (1984)

    Article  CAS  Google Scholar 

  26. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhury, J. Alloys. Compd. 509, 6388–6394 (2011)

    Article  CAS  Google Scholar 

  27. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387(1–2), 56–62 (2007)

    Article  CAS  Google Scholar 

  28. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436(1–2), 226–232 (2007)

    Article  CAS  Google Scholar 

  29. J. Plocharski, W. Wieczoreck, Solid State Ion. 28(30), 979–982 (1988)

    Article  Google Scholar 

  30. B. Behera, P. Nayak, R.N.P. Choudhary, Mat. Res. Bull. 43(2), 401–410 (2008)

    Article  CAS  Google Scholar 

  31. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  32. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41(2), 369–375 (2006)

    Article  CAS  Google Scholar 

  33. J.S. Kim, J.N. Kim, Jpn. J. Appl. Phys. 39, 3502 (2000)

    Article  CAS  Google Scholar 

  34. Z. Lu, J.P. Bonnet, J. Ravez, J.M. Reau, P. Hagenmuller, Phys. Chem. Solids 53, 1–9 (1992)

    Article  CAS  Google Scholar 

  35. A.K. Jonscher, Dielectric Relaxation in Solids (Chelesa Dielectric Press, London, 1983)

    Google Scholar 

  36. L.A. Dissado, R.H. Hill, Nature 279, 685 (1979)

    Article  CAS  Google Scholar 

  37. L.A. Dissado, R.H. Hill, Phill. Mag. B 41, 625 (1980)

    Article  CAS  Google Scholar 

  38. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850–3856 (1989)

    Article  CAS  Google Scholar 

  39. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electroch. 58(2), 429–432 (1975)

    Article  CAS  Google Scholar 

  40. D.K. Pradhan, R.N.P. Choudhary, C. Ranldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  Google Scholar 

  41. S. Saha, T.P. Sihna, Phys. Rev. B 65, 134103 (2002)

    Article  Google Scholar 

  42. K. Funke, Jump relaxation in solid electrolytes. Solid State Chem. 22(2), 111–195 (1993)

    Article  CAS  Google Scholar 

  43. Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Solid State Ion. 57(3–4), 235–244 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush R. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhee, R., Das, P.R., Parida, B.N. et al. Structural, dielectric and electrical properties of dysprosium based new complex electroceramics. J Mater Sci: Mater Electron 23, 1688–1697 (2012). https://doi.org/10.1007/s10854-012-0647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0647-3

Keywords

Navigation