Skip to main content
Log in

Optical and dielectric properties of poly(vinylacetate)/lead oxide composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composite films of poly(vinylacetate)/red lead oxide have been prepared by mixing the fine lead oxide particles into polyvinylacetate solution under ultrasonication followed by film casting technique. Structural, optical and dielectric properties have been performed to characterize these composites films and compared their properties to pure PVAc film. The changes in the structural of the prepared films were investigated by X-ray diffraction (XRD) and FT-IR spectra. It has been observed that the crystallinity of the composites films depends on the Pb-content. Optical spectra of the composites films showed direct allowed band gaps lying in the range of 5.0–4.6 eV which is lower than that of PVAc. Frequency and doping level dependence of dielectric constant (ε′), ac conductivity (σac) and tangent loss (tanδ) have been measured. The values of ε′ were decreased with increasing in frequency, which indicates that the major contribution to the polarization comes from orientation polarization. The ac conductivity is more for doped PVAc than that of undoped PVAc. The experimental results show that ε′ and σac increase with adding of lead oxide in PVAc. The controllable of optical and dielectric properties of the composite film will draw much attention for potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.M. Salem, I. Shaltout, J. Mater. Sci. 45, 1837 (2010)

    Article  CAS  Google Scholar 

  2. K. Cai Chen, C. Wei Wang, Y.I. Lee, H. Guo Liu, Colloids Surf. A. Physicochem. Eng. Asp. 373, 124 (2011)

    Article  Google Scholar 

  3. V.T. Avanesyan, S.A. Potachev, E.P. Baranova, Semiconductors 43, 1496 (2009)

    Article  CAS  Google Scholar 

  4. V.T. Avanesyan, V.A. Bordovskii, S.A. Potachev, J. Non. Cryst. Solids 305, 136 (2002)

    Article  CAS  Google Scholar 

  5. I.V. Kityk, J. Wasylak, J. Kucharski, D. Dorosz, J. Non. Cryst. Solids 279, 285 (2002)

    Article  Google Scholar 

  6. E. Golis, I.V. Kityk, J. Wasylak, J. Kasperczyk, Mater. Res. Bull. 31, 1057 (1996)

    Article  CAS  Google Scholar 

  7. C.S. Choi, B.J. Park, H.J. Choi, Diam. Relat. Mater. 16, 1170 (2007)

    Article  CAS  Google Scholar 

  8. L. Dong, C. Xiong, H. Quan, G. Zhao, Scr. Mater. 55, 835 (2006)

    Article  CAS  Google Scholar 

  9. S. Jana, R. Thapa, R. Maity, K.K. Charropadhyay, Physica E 40, 3121 (2008)

    Article  CAS  Google Scholar 

  10. W. Yang, D. Jin, T. Wang, J. Cheng, Phys. B 405, 1918 (2010)

    Article  CAS  Google Scholar 

  11. R. Baskaran, S. Selvasekarapandian, G. Hirankumar, M.S. Bhuvaneswari, J. Power Source 134, 235 (2004)

    Article  CAS  Google Scholar 

  12. S. Rajendran, V. Shanthi Bama, J Non. Cryst. Solids 356, 2764 (2010)

    Article  CAS  Google Scholar 

  13. M. Salagram, V.K. Prasad, K. Subrahmanyam, J. Alloys. Compd. 335, 228 (2002)

    Article  CAS  Google Scholar 

  14. Y. Badr, M.A. Mahmoud, Cryst. Res. Technol. 41, 658 (2006)

    Article  CAS  Google Scholar 

  15. R. Baskaran, S. Selvasekarapandian, N. kuwata, J. Kawamura, T. Hattori, Solid state Ionics 177, 2679 (2006)

    Article  CAS  Google Scholar 

  16. L.K. Pandey, C. Saxena, V. Dubey, J. Memb. Sci. 227, 173 (2003)

    Article  CAS  Google Scholar 

  17. J. Pisarska, L. Zur, W.A. Pisarski, J. Mol. Struct. 993, 160 (2011)

    Article  CAS  Google Scholar 

  18. M. Abdelaziz, M.M. Gannam, Phys. B 405, 958 (2010)

    Article  CAS  Google Scholar 

  19. R.F. Bhajantri, V. Ravindrachary, V. Ravindrachary, A. Harisha, V. creata, S.P. Nayak, B. Poojary, Polymer 20, 1 (2006)

    Google Scholar 

  20. H. Zidan, A. Tawansi, M. Abu-Elnadr, Phys. B 339, 78 (2003)

    Article  CAS  Google Scholar 

  21. S. Rada, M. Rada, E. Culea, J. Non. Cryst. Solids 357, 62 (2011)

    Article  CAS  Google Scholar 

  22. V.K. Shrikhande, V. Sudarsan, G.P. kothiyal, S.K. Kulshreshtha, J. Non. Cryst. Solids 353, 1341 (2007)

    Article  CAS  Google Scholar 

  23. A. Saini, A. Khanna, V.K. Michaelis, S. Kroeker, F. Gonzalez, D. Hernandez, J. Non. Cryst. Solids 355, 2323 (2009)

    Article  CAS  Google Scholar 

  24. C. Dayanand, R.V.G.K. Sarma, G. Bhikshamaiah, M. Salagram, J. Non. Cryst. Solids 167, 122 (1994)

    Article  CAS  Google Scholar 

  25. V. Dimitrov, T. Komatsu, J. Solid State Chem. 163, 100 (2002)

    Article  CAS  Google Scholar 

  26. Y.B. Saddeek, K.A. Aly, S.A. Bashier, Phys. B 405, 2407 (2010)

    Article  CAS  Google Scholar 

  27. S.F. Wang, M.K. Lu, F. Gu, C.F. Song, D. Xu, D.R. Yuan, G.J. Zhou, Y.X. Qi, Inorg. Chem. Commun. 6, 185 (2003)

    Article  CAS  Google Scholar 

  28. P. Srivastava, S.B. Rai, D.K. Rai, J. Alloys Compd. 368, 1 (2004)

    Article  CAS  Google Scholar 

  29. N.J. Tharayil, S. Sagar, R. Raveendran, A.V. Vaidyan, Phys. B 399, 1 (2007)

    Article  CAS  Google Scholar 

  30. L. Kungumadevi, R. Sathyamoorthy, A. Subbarayan, Solid State Electron. 54, 58 (2010)

    Article  CAS  Google Scholar 

  31. A. Choudhury, Mater. Chem. Phys. 121, 280 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdelaziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelaziz, M. Optical and dielectric properties of poly(vinylacetate)/lead oxide composites. J Mater Sci: Mater Electron 23, 1378–1386 (2012). https://doi.org/10.1007/s10854-011-0602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0602-8

Keywords

Navigation