Skip to main content
Log in

Molecular beam epitaxy of semipolar AlN(\(11\bar{2}2\)) and GaN(\(11\bar{2}2\)) on m-sapphire

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on the plasma-assisted molecular-beam epitaxy of semipolar \(\hbox{AlN}(11\bar{2}2)\) and GaN(\(11\bar{2}2\)) films on \((1\bar{1}00)\) m-plane sapphire. AlN deposited on m-sapphire settles into two main crystalline orientation domains, \(\hbox{AlN}(11\bar{2}2)\) and \(\hbox{AlN}(10\bar{1}0),\) whose ratio depends on the III/V ratio. Growth under moderate nitrogen-rich conditions enables to isolate the \((11\bar{2}2)\) orientation. The in-plane epitaxial relationships of \(\hbox{AlN}(11\bar{2}2)\) on m-plane sapphire are \([11\bar{2}\bar{3}]_{\rm AlN} \vert \vert [0001]_{\rm sapphire}\) and \([1\bar{1}00]_{\rm AlN} \vert \vert [11\bar{2}0]_{\rm sapphire}.\) GaN deposited directly on m-sapphire results in (\(11\bar{2}2\))-oriented layers with (\(10\bar{1}\bar{3}\))-oriented inclusions. A ∼100 nm-thick AlN(\(11\bar{2}2\)) buffer imposes the (\(11\bar{2}2\))-orientation for the GaN layer grown on top. By studying the Ga-desorption on GaN(\(11\bar{2}2\)), we conclude that these optimal growth conditions corresponds to a Ga excess of one monolayer on the GaN(\(11\bar{2}2\)) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, 10024 (1997)

    Article  Google Scholar 

  2. S. Kamiyama, A. Honshio, T. Kitano, M. Iwaya, H. Amano, I. Akasaki, H. Kinoshita, H. Shiomi, Phys. Stat. Sol. (c) 2, 2121 (2005)

    Article  CAS  Google Scholar 

  3. A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Jpn. J. Appl. Phys. 44, L154 (2005)

    Google Scholar 

  4. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Jpn. J. Appl. Phys. 45, L659 (2006)

    Article  CAS  Google Scholar 

  5. L. Lahourcade, E. Bellet-Amalric, E. Monroy, M. Abouzaid, P. Ruterana, Appl. Phys. Lett. 90, 131909 (2007)

    Article  Google Scholar 

  6. L. Lahourcade, J. Renard, B. Gayral, E. Monroy, M.P. Chauvat, P. Ruterana, J. Appl. Phys., submitted

  7. T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 45, L154 (2006)

    Article  CAS  Google Scholar 

  8. M.J. Kappers, J.L. Hollander, C. McAleese, C.F. Johnston, R.F. Broom, J.S. Barnard, M.E. Vickers, C.J. Humphreys, J. Cryst. Growth 300, 155 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Lahourcade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahourcade, L., Bellet-Amalric, E., Monroy, E. et al. Molecular beam epitaxy of semipolar AlN(\(11\bar{2}2\)) and GaN(\(11\bar{2}2\)) on m-sapphire. J Mater Sci: Mater Electron 19, 805–809 (2008). https://doi.org/10.1007/s10854-007-9453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9453-8

Keywords

Navigation