Skip to main content
Log in

The Crystallographic Properties of Strained Silicon Measured by X-Ray Diffraction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Strained silicon represents a materials-based enhancement to further scaling of CMOS transistors. In epitaxial strained silicon substrates, strain is provided by a relaxed SiGe graded buffer layer that expands the in-plane lattice constant of silicon. Because this is accompanied by the introduction of crystalline defects, in the form of dislocations, mosaic structure, and lattice tilting, the deposition of strained silicon occurs on imperfect substrates. Therefore, there is a fundamental need to study the materials properties to ensure strained silicon substrates meet the rigorous criteria for CMOS processing. This paper focuses on the in-depth investigation of the crystallographic properties of epitaxial strained silicon and strained silicon on insulator (SSOI) substrates by X-ray diffraction (XRD). The results for both epitaxial strained silicon and bonded SSOI substrates are presented and contrasted, with particular emphasis on the effect of the layer transfer process used during the formation of SSOI substrates. Although the focus is on strained silicon, the X-ray diffraction techniques highlighted in this paper are readily extendable to other materials heterostructures, such as germanium on insulator, strained germanium, and III–V compound semiconductors on insulator, allowing characterization of many future microelectronic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors, (2003) http://public.itrs.net

  2. E.A. Fitzgerald, Y.H. Xie, M.L. Green, D. Brasen, A.R. Kortan, J. Michel, Y.J. Mill, B.E. Weir, Appl. Phys. Lett. 59, 811 (1991)

    Article  CAS  Google Scholar 

  3. E.A. Fitzgerald, Y.H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, B.E. Weir, J.Vac. Sci. Technol. B 10, 1807 (1992)

    Google Scholar 

  4. T.A. Langdo, A. Lochtefeld, M.T. Currie, R. Hammond, V.K. Yang, J.A. Carlin, C.J. Vineis, G. Braithwaite, H. Badawi, M.T. Bulsara, E.A. Fitzgerald, IEEE Int. SOI Conf., Williamsburg, Virginia 211, (2002)

  5. K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymco, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, P. Saunders, G. Walker, Y. Zhang, M. Steen, M. Ieong, Int. Electron Devices Meet., Washington, DC 49, (2003)

  6. I. Lauer, T.A. Langdo, Z.Y. Cheng, J.G. Fiorenza, G. Braithwaite, M.T. Currie, C.W. Leitz, A. Lochtefeld, H. Badawi, M.T. Bulsara, M. Somerville, and D.A. Antoniadis, IEEE Electron Device Lett. 25, 83 (2004)

    Article  CAS  Google Scholar 

  7. G.M. Cohen, P.M. Mooney, E.C. Jones, K.K. Chan, P.M. Solomon, H-S.P. Wong, Appl. Phys. Lett. 75, 787 (1999)

    Article  CAS  Google Scholar 

  8. SEMI M11-0702: Specifications for Silicon Epitaxial Wafers for Integrated Circuit (IC) Applications (2002), http://downloads.semi.org

  9. P.M. Mooney, S.J. Koester, J.A. Ott, J.L. Jordan-Sweet, J.O. Chu, K.K. Chan, Mat. Res. Soc. Symp. Proc. 686, 3 (2002)

    CAS  Google Scholar 

  10. P.M. Mooney, S.J. Koester, H.J. Hovel, J.O. Chu, K.K. Chan, J.L. Jordan-Sweet, J.A. Ott, N. Klymco, D.M. Mocuta, AIP Conf. Proc. 683, 213 (2003)

    Google Scholar 

  11. P.J. McNally, G. Dilliway, J.M. Bonar, A. Willoughby, T. Tuomi, R. Rantamäki, A.N. Danilewsky, D. Lowney, Appl. Phys. Lett. 77, 1644 (2000)

    Article  CAS  Google Scholar 

  12. C. Ferrari, G. Rossetto, E.A. Fitzgerald, Mater. Sci. Eng. B91-92, 437 (2002)

    CAS  Google Scholar 

  13. M. Erdtmann, M. Carroll, J. Carlin, T.A. Langdo, R. Westhoff, C. Leitz, V. Yang, M.T. Currie, A. Lochtefeld, K. Petrocelli, C.J. Vineis, H. Badawi, M.T. Bulsara, S. Ringel, C.L. Andre, A. Khan, M.K. Hudait, Electrochem. Soc. Proc. Series 2003–11, 106 (2003)

  14. T.A. Langdo, M.T. Currie, Z.Y. Cheng, J.G. Fiorenza, M. Erdtmann, G. Braithwaite, C.W. Leitz, C.J. Vineis, J.A. Carlin, A. Lochtefeld, M.T. Bulsara, I. Lauer, D. A. Antoniadis, M. Somerville, Solid-State Electron. 48, 1357 (2004)

    Article  CAS  Google Scholar 

  15. P. van der Sluis, J. Phys. D: Appl. Phys. 26, A188 (1993)

    CAS  Google Scholar 

  16. J.P. Dismukes, L. Ekstrom, R.J. Paff, J. Phys. Chem. 68, 3021 (1964)

    CAS  Google Scholar 

  17. E. Kasper, A. Schuh, G. Bauer, B. Holländer, H. Kibbel, J. Cryst. Growth 157, 68 (1995)

    CAS  Google Scholar 

  18. V.K. Yang, unpublished result

  19. J.W. Matthews, S. Mader, T.B. Light, J. Appl. Phys. 41, 3800 (1970)

    Article  CAS  Google Scholar 

  20. E. Kasper, H.J. Herzog, Thin Solid Films 44, 357 (1977)

    Article  CAS  Google Scholar 

  21. J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, I.K. Robinson, J. Vac. Sci. Technol. A 2, 436 (1986)

    Google Scholar 

  22. D.C. Houghton, J. Appl. Phys. 70, 2136 (1991)

    Article  CAS  Google Scholar 

  23. J.C. Tsang, P.M. Mooney, F. Dacol, J.O. Chu, J. Appl. Phys. 75, 8098 (1994)

    Article  CAS  Google Scholar 

  24. F. Cerdeira, A. Pinczuk, J.C. Bean, Phys. Rev. B 31, 1202 (1985)

    Article  CAS  Google Scholar 

  25. J. Zi, K. Zhang, X. Xie, Phys. Rev. B 45, 9447 (1992)

    CAS  Google Scholar 

  26. S. de Gironcoli, Phys. Rev. B46, 2412 (1992)

    Google Scholar 

  27. In Ref. 21, the parameter used for the linear constant, Δ si , is not normalized to the strain, while in this work, the parameter c is normalized. The relationship between c and Δ Si is c = 4.17/Δ Si . Thus when c = 0.133 cm, Δ Si = 31.4 cm−1

  28. J.W. Eldredge, K.M. Matney, M.S. Goorsky, H.C. Chui, J.S. Harris, Jr., J. Vac. Sci. Technol. B 13, 689 (1995)

    Article  CAS  Google Scholar 

  29. E.A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991)

    Article  CAS  Google Scholar 

  30. F.K. LeGoues, P.M. Mooney, J.O. Chu, Appl. Phys. Lett. 62, 140 (1993)

    Article  CAS  Google Scholar 

  31. E. Koppensteiner, P. Hamberger, G. Bauer, V. Holy, E. Kasper, Appl. Phys. Lett. 64, 172 (1994)

    Article  CAS  Google Scholar 

  32. M.R. Sandela, Jr., G.V. Hansson, Appl. Phys. Lett. 65, 1442 (1994)

    Google Scholar 

  33. P. Kidd, P.F. Fewster, N.L. Andrew, J. Phys. D: Appl. Phys. 28, A133 (1995)

    Article  CAS  Google Scholar 

  34. R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, D. Hommel, J. Appl. Phys. 93, 8918 (2003)

    Article  CAS  Google Scholar 

  35. X.H. Zheng, H. Chen, Z.B. Yan, Y.J. Han, H.B. Yu, D.S. Li, Q. Huang, J.M. Zhou, J. Cryst. Growth 255, 63 (2003)

    Article  CAS  Google Scholar 

  36. B.D. Cullity, “Elements of X-ray Diffraction,” (Addison-Wesley, Reading, Massachusetts, 1978), pp. 99–102

  37. P.F. Fewster, “X-ray Scattering from Semiconductors,” (Imperial College Press, London, 2000), 263

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erdtmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdtmann, M., Langdo, T.A. The Crystallographic Properties of Strained Silicon Measured by X-Ray Diffraction. J Mater Sci: Mater Electron 17, 137–147 (2006). https://doi.org/10.1007/s10854-006-5627-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-5627-z

Keywords

Navigation