Skip to main content
Log in

Preparation and properties of biodegradable porous Zn-Mg-Y alloy scaffolds

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the field of metal-based bone tissue engineering scaffolds, porous Zn-based scaffolds are expected to be one of the most promising biodegradable bone tissue engineering scaffolds due to their acceptable biocompatibility and more suitable degradation rate compared with Mg-based and Fe-based scaffolds. However, the poor mechanical strength of porous pure Zn scaffolds limits their clinical applications. To improve the mechanical properties of porous Zn scaffolds, alloying treatment has become a feasible method. In this work, porous Zn-Mg-Y alloy scaffolds were prepared by an air pressure infiltration (API) method using NaCl particles as spacing holders. The phase structures, microstructures, compressive mechanical properties, degradation properties, antibacterial abilities as well as cytotoxicity of the obtained porous Zn-Mg-Y alloy scaffolds were investigated. The experimental results suggest that the alloy scaffolds contain strengthening phases such as MgZn2 and/or Mg2Zn11 as well as Y-rich phases. Under the action of these strengthening phases, the porous Zn-Mg-Y alloy scaffolds exhibit better mechanical properties. In vitro degradation tests indicate that the strengthening phases such as MgZn2 and Mg2Zn11 in the alloy scaffolds can be preferentially degraded as sacrificial anodes. Correspondingly, the degradation rates of the porous Zn-Mg-Y alloy scaffolds in simulated body fluid (SBF) have been accelerated. Antibacterial tests imply that the porous Zn-Mg-Y alloy scaffolds possess excellent antibacterial ability against Escherichia coli similar to the porous pure Zn scaffolds. Cytotoxicity tests show that the Zn2+ concentrations in the 100% extracts prepared from the porous Zn-Mg-Y alloy scaffolds (not including Zn-3Mg-0.5Y alloy scaffold) were all lower than that prepared from the porous pure Zn scaffold. The 25% and 10% extracts prepared from all the porous Zn-Mg-Y alloy scaffolds exhibit excellent cellular activity on MC3T3-E1 cells. In summary, the porous Zn-Mg-Y alloy scaffolds have the potential to be used as bone tissue engineering scaffolds to withstand relatively large loads.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Zhu G, Zhang T, Chen M et al (2021) Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioactive Mater 6(11):4110–4140. https://doi.org/10.1016/j.bioactmat.2021.03.043

    Article  CAS  Google Scholar 

  2. Dalisson B, Charbonnier B, Aoude A et al (2021) Skeletal regeneration for segmental bone loss: vascularised grafts, analogues and surrogates. Acta Biomater 136:37–55. https://doi.org/10.1016/j.actbio.2021.09.053

    Article  CAS  PubMed  Google Scholar 

  3. He J, Fang J, Wei P et al (2021) Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomater 121:665–681. https://doi.org/10.1016/j.actbio.2020.11.032

    Article  CAS  PubMed  Google Scholar 

  4. Huang EE, Zhang N, Ganio EA et al (2022) Differential dynamics of bone graft transplantation and mesenchymal stem cell therapy during bone defect healing in a murine critical size defect. J Orthop Transl 36:64–74. https://doi.org/10.1016/j.jot.2022.05.010

    Article  Google Scholar 

  5. Kiernan C, Knuth C, Farrell E (2018) Chapter 6—endochondral ossification: recapitulating bone development for bone defect repair. In: Stoddart MJ, Craft AM, Pattappa G, Gardner OFW (Eds.) Developmental biology and musculoskeletal tissue engineering. Academic Press, Boston, 2018, pp 125–148. https://doi.org/10.1016/B978-0-12-811467-4.00006-1

  6. Sohn HS, Oh JK (2019) Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 23(1):9. https://doi.org/10.1186/s40824-019-0157-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Grado GF, Keller L, Idoux-Gillet Y et al (2018) Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 9:1–18. https://doi.org/10.1177/2041731418776819

    Article  CAS  Google Scholar 

  8. Lei B, Gao X, Zhang R et al (2022) In situ magnesium phosphate/polycaprolactone 3D-printed scaffold induce bone regeneration in rabbit maxillofacial bone defect model. Mater Des 215:110477. https://doi.org/10.1016/j.matdes.2022.110477

    Article  CAS  Google Scholar 

  9. Amini Z, Lari R (2021) A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Tissue Cell 69:101494. https://doi.org/10.1016/j.tice.2021.101494

    Article  CAS  PubMed  Google Scholar 

  10. Venezuela J, Dargusch MS (2019) The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta Biomater 87:1–40. https://doi.org/10.1016/j.actbio.2019.01.035

    Article  CAS  PubMed  Google Scholar 

  11. Bobe K, Willbold E, Haupt M et al (2022) Biodegradable open-porous scaffolds made of sintered magnesium W4 and WZ21 short fibres show biocompatibility in vitro and in long-term in vivo evaluation. Acta Biomater 148:389–404. https://doi.org/10.1016/j.actbio.2022.06.005

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Lin T, Meng H et al (2022) 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. J Orthop Transl 33:13–23. https://doi.org/10.1016/j.jot.2021.11.005

    Article  Google Scholar 

  13. Xie K, Wang N, Guo Y et al (2022) Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study. Bioactive Mater 8:140–152. https://doi.org/10.1016/j.bioactmat.2021.06.032

    Article  CAS  Google Scholar 

  14. Liu J, Liu B, Min S et al (2022) Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: process optimization, in vitro and in vivo investigation. Bioactive Mater 16:301–319. https://doi.org/10.1016/j.bioactmat.2022.02.020

    Article  CAS  Google Scholar 

  15. Garimella A, Rathi D, Jangid R et al (2022) Investigation of bio-degradation behaviour of porous magnesium alloy based bone scaffolds. Mater Today Proc 50:2276–2279. https://doi.org/10.1016/j.matpr.2021.09.537

    Article  CAS  Google Scholar 

  16. Bonithon R, Lupton C, Roldo M et al (2023) Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: a mechanistic study. Bioactive Mater 19:406–417. https://doi.org/10.1016/j.bioactmat.2022.04.012

    Article  CAS  Google Scholar 

  17. Gu XN, Zhou WR, Zheng YF et al (2010) Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater Lett 64(17):1871–1874. https://doi.org/10.1016/j.matlet.2010.06.015

    Article  CAS  Google Scholar 

  18. Seyedraoufi ZS, Mirdamadi S (2014) Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg-Zn scaffold for bone tissue engineering application. Mater Chem Phys 148(3):519–527. https://doi.org/10.1016/j.matchemphys.2014.06.067

    Article  CAS  Google Scholar 

  19. Cifuentes SC, Alvarez L, Arias L et al (2022) Strategies to control in vitro degradation of mg scaffolds processed by powder metallurgy. Metals 12(4):566. https://doi.org/10.3390/met12040566

    Article  CAS  Google Scholar 

  20. Asadi J, Korojy B, Hosseini SA et al (2021) Effect of cell structure on mechanical and bio-corrosion behavior of biodegradable Mg-Zn-Ca foam. Mater Today Commun 28:102715. https://doi.org/10.1016/j.mtcomm.2021.102715

    Article  CAS  Google Scholar 

  21. Jia G, Hou Y, Chen C et al (2018) Precise fabrication of open porous Mg scaffolds using NaCl templates: relationship between space holder particles, pore characteristics and mechanical behavior. Mater Des 140:106–113. https://doi.org/10.1016/j.matdes.2017.11.064

    Article  CAS  Google Scholar 

  22. Zhuang H, Han Y, Feng A (2008) Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C Biomimetic Supramol Syst 28(8):1462–1466. https://doi.org/10.1016/j.msec.2008.04.001

    Article  CAS  Google Scholar 

  23. Yazdimamaghani M, Razavi M, Vashaee D et al (2017) Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C 71:1253–1266. https://doi.org/10.1016/j.msec.2016.11.027

    Article  CAS  Google Scholar 

  24. Li Y, Pavanram P, Zhou J et al (2020) Additively manufactured functionally graded biodegradable porous zinc. Acta Biomater 101:609–623. https://doi.org/10.1016/j.actbio.2019.11.040

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Jahr H, Lietaert K et al (2018) Additively manufactured biodegradable porous iron. Acta Biomater 77:380–393. https://doi.org/10.1016/j.actbio.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  26. Putra NE, Borg KGN, Diaz-Payno PJ et al (2022) Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration. Acta Biomater 148:355–373. https://doi.org/10.1016/j.actbio.2022.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Yang C, Huan Z, Wang X et al (2018) 3D printed Fe scaffolds with HA nanocoating for bone regeneration. ACS Biomater Sci Eng 4(2):608–616. https://doi.org/10.1021/acsbiomaterials.7b00885

    Article  CAS  PubMed  Google Scholar 

  28. Capek J, Vojtech D (2014) Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy. Mater Sci Eng C Mater Biol Appl 43:494–501. https://doi.org/10.1016/j.msec.2014.06.046

    Article  CAS  PubMed  Google Scholar 

  29. Sharma P, Pandey PM (2018) Morphological and mechanical characterization of topologically ordered open cell porous iron foam fabricated using 3D printing and pressureless microwave sintering. Mater Des 160:442–454. https://doi.org/10.1016/j.matdes.2018.09.029

    Article  CAS  Google Scholar 

  30. Alavi R, Trenggono A, Champagne S et al (2017) Investigation on mechanical behavior of biodegradable iron foams under different compression test conditions. Metals. https://doi.org/10.3390/met7060202

    Article  Google Scholar 

  31. Carluccio D, Xu C, Venezuela J et al (2020) Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater 103:346–360. https://doi.org/10.1016/j.actbio.2019.12.018

    Article  CAS  PubMed  Google Scholar 

  32. Putra NE, Leeflang MA, Taheri P et al (2021) Extrusion-based 3D printing of ex situ -alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomater 134:774–790. https://doi.org/10.1016/j.actbio.2021.07.042

    Article  CAS  PubMed  Google Scholar 

  33. Feng YP, Gaztelumendi N, Fornell J et al (2017) Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys. J Alloys Compd 724:1046–1056. https://doi.org/10.1016/j.jallcom.2017.07.112

    Article  CAS  Google Scholar 

  34. Wegener B, Sichler A, Milz S et al (2020) Development of a novel biodegradable porous iron-based implant for bone replacement. Sci Rep 10(1):9141. https://doi.org/10.1038/s41598-020-66289-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Capek J, Jablonska E, Lipov J et al (2018) Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds. Mater Chem Phys 203:249–258. https://doi.org/10.1016/j.matchemphys.2017.10.008

    Article  CAS  Google Scholar 

  36. Lietaert K, van Deursen J, Lapauw T et al (2019) Mechanical properties of replicated cellular Zn and Zn1.5Mg in uniaxial compression. Mater Charact 157:109895. https://doi.org/10.1016/j.matchar.2019.109895

    Article  CAS  Google Scholar 

  37. Yang Y, Cheng Y, Yang M et al (2022) Semicoherent strengthens graphene/zinc scaffolds. Mater Today Nano 17:100163. https://doi.org/10.1016/j.mtnano.2021.100163

    Article  CAS  Google Scholar 

  38. Qin Y, Liu A, Guo H et al (2022) Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: in vitro and in vivo studies. Acta Biomater 145:403–415. https://doi.org/10.1016/j.actbio.2022.03.055

    Article  CAS  PubMed  Google Scholar 

  39. Ren H, Pan C, Liu Y et al (2022) Fabrication, in vitro and in vivo properties of porous Zn-Cu alloy scaffolds for bone tissue engineering. Mater Chem Phys 289:126458. https://doi.org/10.1016/j.matchemphys.2022.126458

    Article  CAS  Google Scholar 

  40. Xia D, Qin Y, Guo H et al (2023) Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioactive Mater 19:12–23. https://doi.org/10.1016/j.bioactmat.2022.03.010

    Article  CAS  Google Scholar 

  41. Cockerill I, Su Y, Sinha S et al (2020) Porous zinc scaffolds for bone tissue engineering applications: a novel additive manufacturing and casting approach. Mater Sci Eng C Mater Biol Appl 110:110738. https://doi.org/10.1016/j.msec.2020.110738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang Y, Cheng Y, Peng S et al (2021) Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioactive Mater 6(5):1230–1241. https://doi.org/10.1016/j.bioactmat.2020.10.017

    Article  CAS  Google Scholar 

  43. Lietaert K, Zadpoor AA, Sonnaert M et al (2020) Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications. Acta Biomater 110:289–302. https://doi.org/10.1016/j.actbio.2020.04.006

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Pavanram P, Zhou J et al (2020) Additively manufactured functionally graded biodegradable porous zinc. Biomater Sci 8(9):2404–2419. https://doi.org/10.1039/c9bm01904a

    Article  CAS  PubMed  Google Scholar 

  45. Zhao LC, Wang X, Wang TB et al (2019) Mechanical properties and biodegradation of porous Zn-1Al alloy scaffolds. Mater Lett 247:75–78. https://doi.org/10.1016/j.matlet.2019.03.097

    Article  CAS  Google Scholar 

  46. Zhao L, Zhang Z, Song Y et al (2016) Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater Des 108:136–144. https://doi.org/10.1016/j.matdes.2016.06.080

    Article  CAS  Google Scholar 

  47. Li Y, Li W, Bobbert FSL et al (2020) Corrosion fatigue behavior of additively manufactured biodegradable porous zinc. Acta Biomater 106:439–449. https://doi.org/10.1016/j.actbio.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Pavanram P, Zhou J et al (2020) Additively manufactured biodegradable porous zinc. Acta Biomater 101:609–623. https://doi.org/10.1016/j.actbio.2019.10.034

    Article  CAS  PubMed  Google Scholar 

  49. Qin Y, Wen P, Voshage M et al (2019) Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: formation quality, microstructure and mechanical properties. Mater Des 181:107937. https://doi.org/10.1016/j.matdes.2019.107937

    Article  CAS  Google Scholar 

  50. Yuan P, Zhang M, Wang X et al (2023) Effects of polylactic acid coating on properties of porous Zn scaffolds as degradable materials. Mater Charact 199:112852. https://doi.org/10.1016/j.matchar.2023.112852

    Article  CAS  Google Scholar 

  51. Zhao LC, Xie Y, Zhang Z et al (2018) Fabrication and properties of biodegradable ZnO nano-rods/porous Zn scaffolds. Mater Charact 144:227–238. https://doi.org/10.1016/j.matchar.2018.07.023

    Article  CAS  Google Scholar 

  52. Xie Y, Zhao LC, Zhang Z et al (2018) Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials. Mater Chem Phys 219:433–443. https://doi.org/10.1016/j.matchemphys.2018.08.023

    Article  CAS  Google Scholar 

  53. Staiger MP, Pietak AM, Huadmai J et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  54. Peuster M, Hesse C, Schloo T et al (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27(28):4955–5496. https://doi.org/10.1016/j.biomaterials.2006.05.029

    Article  CAS  PubMed  Google Scholar 

  55. Huang H, Liu H, Wang L-S et al (2020) A high-strength and biodegradable Zn-Mg alloy with refined ternary eutectic structure processed by ECAP. Acta Metall Sin Engl Lett 33(9):1191–1200. https://doi.org/10.1007/s40195-020-01027-x

    Article  CAS  Google Scholar 

  56. Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25(18):2577–2582. https://doi.org/10.1002/adma.201300226

    Article  CAS  PubMed  Google Scholar 

  57. Vojtech D, Kubasek J, Serak J et al (2011) Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater 7(9):3515–3522. https://doi.org/10.1016/j.actbio.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  58. Li H, Yang H, Zheng Y et al (2015) Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater Des 83:95–102. https://doi.org/10.1016/j.matdes.2015.05.089

    Article  CAS  Google Scholar 

  59. Liu Y, Zheng Y, Chen X-H et al (2019) Fundamental theory of biodegradable metals-definition, criteria, and design. Adv Funct Mater 29(18):1805402. https://doi.org/10.1002/adfm.201805402

    Article  CAS  Google Scholar 

  60. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227. https://doi.org/10.1093/ajcn/51.2.225

    Article  CAS  PubMed  Google Scholar 

  61. Li HF, Xie XH, Zheng YF et al (2015) Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr (vol 5, 10719, 2015). Sci Rep 5:10719. https://doi.org/10.1038/srep12190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao L, Song Y, Zhang Z et al (2018) Fabrication and investigation on properties of degradable Zn-1Al alloy for biomedical applications. Mater Rev 32(4A):1192–1196

    Google Scholar 

  63. Hou Y, Jia G, Yue R et al (2018) Synthesis of biodegradable Zn-based scaffolds using NaCl templates: relationship between porosity, compressive properties and degradation behavior. Mater Charact 137:162–169. https://doi.org/10.1016/j.matchar.2018.01.033

    Article  CAS  Google Scholar 

  64. Liu A, Lu Y, Dai J et al (2023) Mechanical properties, in vitro biodegradable behavior, biocompatibility and osteogenic ability of additively manufactured Zn-0.8Li-01.Mg alloy scaffolds. Biomater Adv 153:213571. https://doi.org/10.1016/j.bioadv.2023.213571

    Article  CAS  PubMed  Google Scholar 

  65. Zhao LC, Yuan PK, Zhang MS et al (2023) Preparation and properties of porous Zn-based scaffolds as biodegradable implants: a review. J Mater Sci 58(20):8275–8316. https://doi.org/10.1007/s10853-023-08561-w

    Article  CAS  Google Scholar 

  66. Wang X, Liu AB, Zhang ZB et al (2024) Additively Manufactured Zn-2Mg alloy porous scaffolds with customizable biodegradable performance and enhanced osteogenic ability. Adv Sci 11(5):2307329. https://doi.org/10.1002/advs.202307329

    Article  CAS  Google Scholar 

  67. Voshage M, Megahed S, Schueckler PG et al (2022) Additive manufacturing of biodegradable Zn-xMg alloys: effect of Mg content on manufacturability, microstructure and mechanical properties. Mater Today Commun 32:103805. https://doi.org/10.1016/j.mtcomm.2022.103805

    Article  CAS  Google Scholar 

  68. Zhang L, Liu XY, Huang H et al (2019) Effects of Ti on microstructure, mechanical properties and biodegradation behavior of Zn-Cu alloy. Mater Lett 244:119–122. https://doi.org/10.1016/j.matlet.2019.02.071

    Article  CAS  Google Scholar 

  69. Huang H, Liu H, Ren K et al (2021) Improvement of ductility and work hardening ability in a high strength Zn-Mg-Y alloy via micron-sized and submicron-sized YZn12 particles. J Alloys Compd 877:160268. https://doi.org/10.1016/j.jallcom.2021.160268

    Article  CAS  Google Scholar 

  70. Wen P, Qin Y, Chen Y et al (2019) Laser additive manufacturing of Zn porous scaffolds: shielding gas flow, surface quality and densification. J Mater Sci Technol 35(2):368–376. https://doi.org/10.1016/j.jmst.2018.09.065

    Article  CAS  Google Scholar 

  71. Qin Y, Wen P, Guo H et al (2019) Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater 98:3–22. https://doi.org/10.1016/j.actbio.2019.04.046

    Article  CAS  PubMed  Google Scholar 

  72. Yao C, Wang Z, Tay SL et al (2014) Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy. J Alloys Compd 602:101–107. https://doi.org/10.1016/j.jallcom.2014.03.025

    Article  CAS  Google Scholar 

  73. Vida TA, Freitas ES, Brito C et al (2016) Thermal parameters and microstructural development in directionally solidified Zn-Rich Zn-Mg alloys. Metall Mater Trans A Phys Metall Mater Sci 47A(6):3052–3064. https://doi.org/10.1007/s11661-016-3494-7

    Article  CAS  Google Scholar 

  74. Akdeniz MV, Wood JV (1996) Microstructures and phase selection in rapidly solidified Zn-Mg alloys. J Mater Sci 31(2):545–550. https://doi.org/10.1007/BF01139175

    Article  CAS  Google Scholar 

  75. Liu HY, Jones H (1992) Solidification microstructure selection and characteristics in the zinc-based Zn system. Acta Metall et Mater 40(2):229–239. https://doi.org/10.1016/0956-7151(92)90298-S

    Article  CAS  Google Scholar 

  76. Mason JT, Chiotti P (1976) Phase diagram and thermodynamic properties of the yttrium-zinc system. Metall Mater Trans A 7(2):287–291. https://doi.org/10.1007/BF02644469

    Article  Google Scholar 

  77. Wu S, Liu X, Yeung KWK et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36. https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  78. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  79. Byun JM, Yu JM, Kim DK et al (2013) Corrosion behavior of Mg2Zn11 and MgZn2 single phases. Korean J Met Mater 51(6):413–419. https://doi.org/10.3365/kjmm.2013.51.6.413

    Article  CAS  Google Scholar 

  80. Liu X, Yuan W, Shen D et al (2021) Exploring the biodegradation of pure Zn under simulated inflammatory condition. Corros Sci 189:109606. https://doi.org/10.1016/j.corsci.2021.109606

    Article  CAS  Google Scholar 

  81. Guo H, Xia D, Zheng Y et al (2020) A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: in vitro and in vivo studies. Acta Biomater 106:396–409. https://doi.org/10.1016/j.actbio.2020.02.024

    Article  CAS  PubMed  Google Scholar 

  82. Shao X, Wang X, Xu F et al (2022) In vivo biocompatibility and degradability of a Zn-Mg-Fe alloy osteosynthesis system. Bioactive Mater 7:154–166. https://doi.org/10.1016/j.bioactmat.2021.05.012

    Article  CAS  Google Scholar 

  83. Young J, Reddy RG (2020) Synthesis, mechanical properties, and in vitro corrosion behavior of biodegradable Zn-Li-Cu alloys. J Alloys Compd 844:156257. https://doi.org/10.1016/j.jallcom.2020.156257

    Article  CAS  Google Scholar 

  84. Jamesh M, Kumar S, Narayanan TSNS (2012) Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J Coat Technol Res 9(4):495–502. https://doi.org/10.1007/s11998-011-9382-6

    Article  CAS  Google Scholar 

  85. Lupan O, Chow L, Chai G et al (2007) Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing. Mater Sci Eng B 145(1):57–66. https://doi.org/10.1016/j.mseb.2007.10.004

    Article  CAS  Google Scholar 

  86. Hu J, Zhong Z, Zhang F et al (2015) Coating of ZnO nanoparticles onto the inner pore channel surface of SiC foam to fabricate a novel antibacterial air filter material. Ceram Int 41(5):7080–7090. https://doi.org/10.1016/j.ceramint.2015.02.016

    Article  CAS  Google Scholar 

  87. Ponce S, Peña MA, Fierro JLG (2000) Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl Catal B Environ 24(3):193–205. https://doi.org/10.1016/S0926-3373(99)00111-3

    Article  CAS  Google Scholar 

  88. Tejuca LG, Fierro JLG (1989) XPS and TPD probe techniques for the study of LaNiO3 perovskite oxide. Thermochim Acta 147(2):361–375. https://doi.org/10.1016/0040-6031(89)85191-3

    Article  CAS  Google Scholar 

  89. Maeda S, Yamamoto M (1998) The role of chromate treatment after phosphating in paint adhesion. Prog Org Coat 33(1):83–89. https://doi.org/10.1016/S0300-9440(98)00014-9

    Article  CAS  Google Scholar 

  90. Tsai CY, Liu JS, Chen PL et al (2010) A two-step roll coating phosphate/molybdate passivation treatment for hot-dip galvanized steel sheet. Corros Sci 52(10):3385–3393. https://doi.org/10.1016/j.corsci.2010.06.020

    Article  CAS  Google Scholar 

  91. Duchoslav J, Arndt M, Keppert T et al (2013) XPS investigation on the surface chemistry of corrosion products on ZnMgAl-coated steel. Anal Bioanal Chem 405(22):7133–7144. https://doi.org/10.1007/s00216-013-7099-3

    Article  CAS  PubMed  Google Scholar 

  92. Qian BF, Wang YL, Zhao QN et al (2021) Preparation and luminescence properties of Eu3+ incorporated in CaCO3 nanocrystals with multiple sites. J Lumin. https://doi.org/10.1016/j.jlumin.2021.118344

    Article  Google Scholar 

  93. Kuroda MOK, Ishikawa M, Ichino R et al (2002) Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions. Solid State Ion 151:47–52. https://doi.org/10.1016/s0167-2738(02)00603-3

    Article  Google Scholar 

  94. Tong X, Shi Z, Xu L et al (2020) Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants. Acta Biomater 102:481–492. https://doi.org/10.1016/j.actbio.2019.11.031

    Article  CAS  PubMed  Google Scholar 

  95. Yang H, Qu X, Lin W et al (2019) Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn Ions with sacrificial Mg-rich anode design. ACS Biomater Sci Eng 5(2):453–467. https://doi.org/10.1021/acsbiomaterials.8b01137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Science Research Project of Hebei Education Department with No. ZD2021034.

Author information

Authors and Affiliations

Authors

Contributions

Mengsi Zhang: Conceptualization, Data curation, Formal analysis, Writing—original draft, Writing—review & editing. Kelei Li: Data curation, Formal analysis. Tie bao Wang: Data curation, Formal analysis. Xin Wang: Conceptualization, Formal analysis. Yumin Qi: Data curation, Formal analysis. Lichen Zhao: Funding acquisition, Conceptualization, Data curation, Formal analysis, Writing—review & editing. Chunxiang Cui: Conceptualization, Formal analysis.

Corresponding author

Correspondence to Lichen Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests or personal relationships.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, K., Wang, T. et al. Preparation and properties of biodegradable porous Zn-Mg-Y alloy scaffolds. J Mater Sci 59, 8441–8464 (2024). https://doi.org/10.1007/s10853-024-09703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09703-4

Navigation