Skip to main content

Advertisement

Log in

Enhancing the mechanical and magnetic properties for low magnetic stainless-steel plates by non-recrystallization hot rolling and solution treatment

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing low magnetic stainless-steel plates with high yield strength while ensuring good plasticity, corrosion resistance, and paramagnetism is a tough technical challenge, especially under conditions of limited rolling mill capacity and total reduction. In this study, a low magnetic stainless-steel plate with excellent yield strength (620 MPa), ultimate tensile strength (891 MPa), and ductility (42.7%) was prepared by rolling in the non-recrystallization region (below the recrystallization temperature Tnr) and subsequent solution treatment. The effects of different thermomechanical processing techniques on the recrystallization behavior, grain size, dislocation density, grain boundary characteristics, micro-texture, mechanical and magnetic properties of low magnetic stainless steel were studied. Compared with conventional high-temperature hot rolling, rolling in the non-recrystallization region and subsequent solid solution treatment can effectively refine the grain size and form Brass {001} < 211 > texture in the plate, with texture intensity increasing with greater deformation in this region. The main strengthening contribution mechanisms of high yield strength are N-element solid solution strengthening and fine grain strengthening. Due to the high austenite stability and appropriate rolling temperature, the paramagnetism of low magnetic stainless steel was not disrupted after rolling in the non-recrystallization region, and the relative permeability of all samples was less than 1.01. From the perspectives of production efficiency, process difficulty, and economy, the HR3-S process route in this study makes it easier to achieve large-scale industrialization, providing theoretical and process references for developing low magnetic stainless-steel plates toward high yield strength and high paramagnetic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available and are available from the corresponding author upon reasonable request.

References

  1. Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater Sci Eng R 65:39–104. https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  2. Song YL, Li CS, Li BZ, Han YH (2018) Microstructure characterization of Fe–21Cr–15Ni–Nb–V non-magnetic austenitic stainless steel during hot deformation. Mater Sci Technol 34:1639–1648. https://doi.org/10.1080/02670836.2018.1465635

    Article  CAS  Google Scholar 

  3. Zambon A, Ferro P, Bonollo F (2006) Microstructural, compositional and residual stress evaluation of CO2 laser welded superaustenitic AISI 904L stainless steel. Mater Sci Eng A 424:117–127. https://doi.org/10.1016/j.msea.2006.03.003

    Article  CAS  Google Scholar 

  4. Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des 50:581–586. https://doi.org/10.1016/j.matdes.2013.03.056

    Article  CAS  Google Scholar 

  5. Haroush S, Priel E, Moreno D, Busiba A, Silverman I, Turgeman A, Shneck R, Gelbstein Y (2015) Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater Des 83:75–84. https://doi.org/10.1016/j.matdes.2015.05.049

    Article  CAS  Google Scholar 

  6. Hu J, Li X, Zhang Z, Wang L, Li Y, Xu W (2023) Overcoming the strength-ductility trade-off in metastable dual-phase heterogeneous structures using variable temperature rolling and annealing. Mater Res Lett 11:648–654. https://doi.org/10.1080/21663831.2023.2209596

    Article  CAS  Google Scholar 

  7. Korzhavyi PA, Sandström R (2015) First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength. Mater Sci Eng A 626:213–219. https://doi.org/10.1016/j.msea.2014.12.057

    Article  CAS  Google Scholar 

  8. Zhao WX, Zhou DQ, Jiang SH, Wang H, Wu Y, Liu XJ, Wang XZ, Lu ZP (2018) Ultrahigh stability and strong precipitation strengthening of nanosized NbC in alumina-forming austenitic stainless steels subjecting to long-term high-temperature exposure. Mater Sci Eng A 738:295–307. https://doi.org/10.1016/j.msea.2018.09.081

    Article  CAS  Google Scholar 

  9. Challa VSA, Wan XL, Somani MC, Karjalainen LP, Misra RDK (2014) Significance of interplay between austenite stability and deformation mechanisms in governing three-stage work hardening behavior of phase-reversion induced nanograined/ultrafine-grained (NG/UFG) stainless steels with high strength-high ductility combination. Scripta Mater 86:60–63. https://doi.org/10.1016/j.scriptamat.2014.05.010

    Article  CAS  Google Scholar 

  10. Wen DH, Li Z, Jiang BB, Wang Q, Chen GQ, Tang R, Zhang RQ, Dong C, Liaw PK (2018) Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels. Mater Char 144:86–98. https://doi.org/10.1016/j.matchar.2018.07.007

    Article  CAS  Google Scholar 

  11. Shi C, Zhu X, Zheng X, Lan P, Li J (2022) Precipitation and growth of Laves phase and NbC during aging and its effect on tensile properties of a novel 15Cr–22Ni–1Nb austenitic heat-resistant steel. Mater Sci Eng A 854:143822. https://doi.org/10.1016/j.msea.2022.143822

    Article  CAS  Google Scholar 

  12. Trotter G, Baker I (2015) The effect of aging on the microstructure and mechanical behavior of the alumina-forming austenitic stainless steel Fe–20Cr–30Ni–2Nb–5Al. Mater Sci Eng A 627:270–276. https://doi.org/10.1016/j.msea.2014.12.072

    Article  CAS  Google Scholar 

  13. Simmons JW (1996) Overview: high-nitrogen alloying of stainless steels. Mater Sci Eng A 207:159–169. https://doi.org/10.1016/0921-5093(95)09991-3

    Article  Google Scholar 

  14. Chen SR, Davies HA, Rainforth WM (1999) Austenite phase formation in rapidly solidified Fe–Cr–Mn–C steels. Acta Mater 47:4555–4569. https://doi.org/10.1016/S1359-6454(99)00334-1

    Article  CAS  Google Scholar 

  15. Shin JH, Lee JW (2014) Effects of twin intersection on the tensile behavior in high nitrogen austenitic stainless steel. Mate Char 91:19–25. https://doi.org/10.1016/j.matchar.2014.01.025

    Article  CAS  Google Scholar 

  16. Di Schino A, Kenny JM (2003) Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel. Mater Lett 57:1830–1834. https://doi.org/10.1016/S0167-577X(02)01076-5

    Article  CAS  Google Scholar 

  17. Zhang H, Zhang CH, Wang Q, Wu CL, Zhang S, Chen J, Abdullah AO (2018) Effect of Ni content on stainless steel fabricated by laser melting deposition. Opt Laser Technol 101:363–371. https://doi.org/10.1016/j.optlastec.2017.11.032

    Article  CAS  Google Scholar 

  18. Gubicza J, El-Tahawy M, Huang Y, Choi H, Choe H, Lábár JL, Langdon TG (2016) Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Mater Sci Eng A 657:215–223. https://doi.org/10.1016/j.msea.2016.01.057

    Article  CAS  Google Scholar 

  19. Lei YB, Wang ZB, Zhang B, Luo ZP, Lu J, Lu K (2021) Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing. Acta Mater 208:116773. https://doi.org/10.1016/j.actamat.2021.116773

    Article  CAS  Google Scholar 

  20. Liu M, Gong W, Zheng R, Li J, Zhang Z, Gao S, Ma C, Tsuji N (2022) Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered or recrystallized nanostructures. Acta Mater 226:117629. https://doi.org/10.1016/j.actamat.2022.117629

    Article  CAS  Google Scholar 

  21. Ueno H, Kakihata K, Kaneko Y, Hashimoto S, Vinogradov A (2011) Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater 59:7060–7069. https://doi.org/10.1016/j.actamat.2011.07.061

    Article  CAS  Google Scholar 

  22. Shi JT, Hou LG, Zuo JR, Zhuang LR, Zhang JS (2017) Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel. Int J Minerals Metall Mater 24:638–645. https://doi.org/10.1007/s12613-017-1446-x

    Article  CAS  Google Scholar 

  23. Niu G, Zurob HS, Misra RDK, Tang Q, Zhang Z, Nguyen M-T, Wang L, Wu H, Zou Y (2022) Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure. Acta Mater 226:117642. https://doi.org/10.1016/j.actamat.2022.117642

    Article  CAS  Google Scholar 

  24. Li J, Cao Y, Gao B, Li Y, Zhu Y (2018) Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J Mater Sci 53:10442–10456. https://doi.org/10.1007/s10853-018-2322-4

    Article  CAS  Google Scholar 

  25. Li J, Gao B, Huang Z, Zhou H, Mao Q, Li Y (2018) Design for strength-ductility synergy of 316L stainless steel with heterogeneous lamella structure through medium cold rolling and annealing. Vacuum 157:128–135. https://doi.org/10.1016/j.vacuum.2018.08.049

    Article  CAS  Google Scholar 

  26. Pradhan SK, Tripathy S, Singh R, Murugaiyan P, Roy D, Humane MM, Chowdhury SG (2022) On the grain boundary character evolution in non equiatomic high entropy alloy during hot rolling induced dynamic recrystallization. J Alloys Compd 922:166126. https://doi.org/10.1016/j.jallcom.2022.166126

    Article  CAS  Google Scholar 

  27. Yanushkevich Z, Belyakov A, Kaibyshev R (2015) Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773–1273K. Acta Mater 82:244–254. https://doi.org/10.1016/j.actamat.2014.09.023

    Article  CAS  Google Scholar 

  28. Yanushkevich Z, Dobatkin SV, Belyakov A, Kaibyshev R (2017) Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling. Acta Mater 136:39–48. https://doi.org/10.1016/j.actamat.2017.06.060

    Article  CAS  Google Scholar 

  29. Rout M, Murugabalaji V (2023) Tensile properties variation along the thickness direction of hot rolled austenitic stainless steel. Mater Sci Eng A 865:144643. https://doi.org/10.1016/j.msea.2023.144643

    Article  CAS  Google Scholar 

  30. Nafisi S, Arafin MA, Collins L, Szpunar J (2012) Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles. Mater Sci Eng A 531:2–11. https://doi.org/10.1016/j.msea.2011.09.072

    Article  CAS  Google Scholar 

  31. Kumar SSS, Raghu T, Bhattacharjee PP, Rao GA, Borah U (2016) Strain rate dependent microstructural evolution during hot deformation of a hot isostatically processed nickel base superalloy. J Alloys Compd 681:28–42. https://doi.org/10.1016/j.jallcom.2016.04.185

    Article  CAS  Google Scholar 

  32. Raabe D (1997) Texture and microstructure evolution during cold rolling of a strip cast and of a hot rolled austenitic stainless steel. Acta Mater 45:1137–1151. https://doi.org/10.1016/S1359-6454(96)00222-4

    Article  CAS  Google Scholar 

  33. Ma B, Li C, Han Y, Wang J (2016) γ→α′ Martensitic transformation and magnetic property of cold rolled Fe–20Mn–4Al–0.3C steel. J Magn Magn Mater 419:249–254. https://doi.org/10.1016/j.jmmm.2016.06.013

    Article  CAS  Google Scholar 

  34. Mumtaz K, Takahashi S, Echigoya J, Kamada Y, Zhang LF, Kikuchi H, Ara K, Sato M (2004) Magnetic measurements of the reverse martensite to austenite transformation in a rolled austenitic stainless steel. J Mater Sci 39:1997–2010. https://doi.org/10.1023/B:JMSC.0000017761.64839.fc

    Article  CAS  Google Scholar 

  35. Dong JB, Li K, Shao ZB, Peng LG, Li CS (2023) Dynamic recrystallization behavior and mechanism of Fe–Cr–Ni–Mn–Mo–N low magnetic stainless steel during hot deformation. J Mater Sci 58:15845–15860. https://doi.org/10.1007/s10853-023-08916-3

    Article  CAS  Google Scholar 

  36. Gao F, Chen Y, Zhu Q, Nan Y, Tang S, Cai Z, Zhang F, Xue W, Cai X, Yu F, Liu Z (2023) Formation of recrystallization texture and its effect on deep drawability for high-purified ferritic stainless steel by two step cold rolling. Mater Des 226:111679. https://doi.org/10.1016/j.matdes.2023.111679

    Article  CAS  Google Scholar 

  37. Liu G, Zhang M, Feng Y, Cao K, Li S, Wang Y (2022) Influence of warm rolling temperature on multi-scale lamellar structure and mechanical properties of medium carbon steel. J Mater Res Technol 18:3739–3750. https://doi.org/10.1016/j.jmrt.2022.04.047

    Article  CAS  Google Scholar 

  38. Vajpai SK, Ota M, Watanabe T, Maeda R, Sekiguchi T, Kusaka T, Ameyama K (2015) The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution. Metall Mater Trans A 46:903–914. https://doi.org/10.1007/s11661-014-2649-7

    Article  CAS  Google Scholar 

  39. Wu X, Zhu Y, Lu K (2020) Ductility and strain hardening in gradient and lamellar structured materials. Scripta Mater 186:321–325. https://doi.org/10.1016/j.scriptamat.2020.05.025

    Article  CAS  Google Scholar 

  40. Cao DY, Bouzolin D, Lu HB, Todd Griffith D (2023) Bending and shear improvements in 3D-printed core sandwich composites through modification of resin uptake in the skin/core interphase region. Compos Part B-Eng 264:110912. https://doi.org/10.1016/j.compositesb.2023.110912

    Article  CAS  Google Scholar 

  41. Cao DY (2023) Investigation into surface-coated continuous flax fiber-reinforced natural sandwich composites via vacuum-assisted material extrusion. Prog Addit Manuf. https://doi.org/10.1007/s40964-023-00508-6

    Article  Google Scholar 

  42. Cao DY (2024) Increasing strength and ductility of extruded polylactic acid matrix composites using short polyester and continuous carbon fibers. Int J Adv Manuf Technol 130:3631–3647. https://doi.org/10.1007/s00170-023-12887-9

    Article  Google Scholar 

  43. Zheng R, Liu M, Zhang Z, Ameyama K, Ma C (2019) Toward strength-ductility synergy through hierarchical microstructure design in an austenitic stainless steel. Scripta Mater 169:76–81. https://doi.org/10.1016/j.scriptamat.2019.05.017

    Article  CAS  Google Scholar 

  44. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  45. Irvine TGKJ, Pickering FB (1969) The strength of austenitic stainless steels. J Iron Steel Inst 119:1017–1028

    Google Scholar 

  46. Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I.—theoretical. Proc R Soc A: Math Phys Eng Sci. https://doi.org/10.1098/rspa.1934.0106

    Article  Google Scholar 

  47. Abramova MM, Enikeev NA, Valiev RZ, Etienne A, Radiguet B, Ivanisenko Y, Sauvage X (2014) Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater Lett 136:349–352. https://doi.org/10.1016/j.matlet.2014.07.188

    Article  CAS  Google Scholar 

  48. Pierce DT, Jiménez JA, Bentley J, Raabe D, Wittig JE (2015) The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater 100:178–190. https://doi.org/10.1016/j.actamat.2015.08.030

    Article  CAS  Google Scholar 

  49. Das SR, Shyamal S, Sahu T, Kömi JI, Chakraborti PC, Porter DA, Karjalainen LP, Sahu P (2021) On the mechanism of cross-slip induced dislocation substructure formation in an high-Mn steel. Materialia 15:101042. https://doi.org/10.1016/j.mtla.2021.101042

    Article  CAS  Google Scholar 

  50. Odnobokova M, Yanushkevich Z, Kaibyshev R, Belyakov A (2020) On the strength of a 316L-type stainless steel subjected to cold or warm rolling followed by annealing. Materials 13:2116. https://doi.org/10.3390/ma13092116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu DM, Li GQ, Wan XL, Misra RDK, Zhang XG, Xu G, Wu KM (2018) The effect of annealing on the microstructural evolution and mechanical properties in phase reversed 316LN austenitic stainless steel. Mater Sci Eng A 720:36–48. https://doi.org/10.1016/j.msea.2018.02.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52274376).

Author information

Authors and Affiliations

Authors

Contributions

JD—participated in literature research, experimental operation, microstructure characterization, data analysis, and manuscript writing. ZS—took part in experimental operation. KL—took part in microstructure characterization. LP—participated in manuscript editing. CL—contributed to funding and manuscript editing.

Corresponding authors

Correspondence to Lianggui Peng or Changsheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable to this work.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Shao, Z., Li, K. et al. Enhancing the mechanical and magnetic properties for low magnetic stainless-steel plates by non-recrystallization hot rolling and solution treatment. J Mater Sci 59, 8465–8491 (2024). https://doi.org/10.1007/s10853-024-09634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09634-0

Navigation