Skip to main content
Log in

Positron annihilation spectroscopic studies of ferromagnetic methylammonium lead iodide perovskite

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Point defects in methylammonium lead iodide (MAPbI3) are believed to be the source of its room-temperature ferromagnetic behavior. The existence of room-temperature ferromagnetism observed through the hysteresis in the M-H (magnetization vs. magnetic field) curve proves that ferromagnetism is possible even at room temperature in the tetragonal phases of MAPbI3 system. Employing positron annihilation spectroscopy, the presence of a significant amount of point defects in the ball-mill ground MAPbI3 sample has been identified. Coincidence Doppler broadening spectroscopy identifies that the point defects are mostly iodine vacancy (V˙I) in MAPbI3. Experimental data supports the theoretical prediction of iodine vacancy (V˙I)-induced ferromagnetism in the cubic phase which exists at a little higher temperature than the room-temperature tetragonal phase for MAPbI3. Moreover, the ab-initio band structure calculation shows the n-/p-type semiconducting behavior due to the vacancy formation in MAPbI3. Ferromagnetism along with semiconducting properties makes it viable for spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J (2014) Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26:6503–6509

    Article  CAS  PubMed  Google Scholar 

  2. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347:967–970

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Shang MH, Zhang J, Zhang P, Yang Z, Zheng J, Haque MA, Yang W, Wei SH, Wu T (2019) Stable bandgap tunable hybrid perovskites with alloyed PbBa cations for high-performance photovoltaic applications. J Phys Chem Lett 10:59–66

    Article  CAS  PubMed  Google Scholar 

  4. Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Li GR, Gao XP (2019) Low-cost counter-electrode materials for dye-sensitized and perovskite solar cells. Adv Mat 32:1806478

    Article  Google Scholar 

  6. Gu C, Lee JS (2016) Flexible hybrid organic-inorganic perovskite memory. ACS Nano 10:5413–5418

    Article  CAS  PubMed  Google Scholar 

  7. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organo-metal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  PubMed  Google Scholar 

  8. National renewable energy laboratory (2022). Best research-cell efficiencies 8.

  9. Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu YJ, Ohisa S, Kido J (2018) Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics 12:681–687

    Article  ADS  CAS  Google Scholar 

  10. Dou L, Yang Y, You J, Hong Z, Chang WH (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5:5404

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lin Y, Pattanasattayavong P, Anthopoulos TD (2017) Metal halide perovskite transistor for printed electronics: challenges and opportunity. Adv Mater 29:1702838

    Article  Google Scholar 

  12. Huang C, Zhang C, Xiao S, Wang Y, Fan Y, Liu Y, Zhang N, Qu G, Ji H, Han J, Ge L, Kivsar Y, Song Q (2020) Ultrafast control of vortex microlasers. Science 367:1018–1021

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Park Y, Kim SH, Lee D, Lee JS (2021) Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nat Commun 12:3527

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao D, Xiao G, Liu Z, Sui L, Yuan K, Ma Z, Zou B (2021) Harvesting cool daylight in hybrid organic–inorganic halides microtubules through the reservation of pressure-induced emission. Adv Mater 33:2100323

    Article  CAS  Google Scholar 

  15. Dhar J, Sil S, Hoque NA, Dey A, Das S, Ray PP, Sanyal D (2018) Lattice defect induced piezo response in methylammonium lead iodide perovskite based Nano-generator. Chem Select 3:5304–5312

    CAS  Google Scholar 

  16. John RA, Yantara N, Ng YF, Narasimman G, Mosconi E, Meggiolaro D, Kulkarni MR, Gopalakrishnan PK, Nguyen CA, Angelis FD, Mhaisalkar SG, Basu A, Mathews N (2018) Ionotronic halide perovskite drift-difusive synapses for low-power neuromorphic computation. Adv Mater 30:1805454

    Article  Google Scholar 

  17. Ando K (2006) Seeking room temperature ferromagnetic semiconductors. Science 312:1883–1885

    Article  CAS  PubMed  Google Scholar 

  18. Dietl T (2000) Zener model description of ferromagnetism in zinc blende magnetic semiconductors. Science 287:1019–1022

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sharma P, Gupta A, Rao KV, Owens FJ, Sharma R, Ahuja R, Guillen JMO, Johansson B, Gehring GA (2003) Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mat 2:673–677

    Article  CAS  Google Scholar 

  20. Liu Q, Yuan CL, Gan CL, Han G (2011) Defect-induced ferromagnetism on pulse laser ablated Zn0.95Co0.05O diluted magnetic semiconducting thin films. J App Phys 110:033907

    Article  ADS  Google Scholar 

  21. Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306

    Article  ADS  Google Scholar 

  22. Mal S, Narayan J, Nori S, Prater JT, Kumar D (2010) Defect-mediated room temperature ferromagnetism in zinc oxide. Solid State Commu 150:1660–1664

    Article  ADS  CAS  Google Scholar 

  23. Sanyal D, Chakrabarti M, Roy TK, Chakrabarti A (2007) The origin of ferromagnetism and defect-magnetization correlation in nanocrystalline ZnO. Phys Lett A 371:482–485

    Article  ADS  CAS  Google Scholar 

  24. Ning S, Zhan P, Xie Q, Wang W, Zhang Z (2015) Defects-driven ferromagnetism in undoped dilute magnetic oxides: a review. J Mat Sci Tech 31:969–978

    Article  CAS  Google Scholar 

  25. Luitel H, Chettri P, Tiwari A, Sanyal D (2019) Experimental and first principle study of room temperature ferromagnetism in carbon-doped rutile TiO2. Mater Res Bull 110:13–17

    Article  CAS  Google Scholar 

  26. Roy S, Luitel H, Sanyal D (2017) Origin of ferromagnetism in Cu doped rutile TiO2 an ab-initio approach. Comp Cond Matter 13:127–130

    Google Scholar 

  27. Luo CQ, Zhu SC, Lam CH, Ling FCC (2020) Ferromagnetic behavior of native point defects and vacancy-clusters in ZnO studied by first principle calculation. Mat Res Express 7:076103

    Article  ADS  CAS  Google Scholar 

  28. Luitel H, Sanyal D (2019) Ferromagnetism in p-block-element doped ZnO: an ab-initio approach. Comp Cond Matter 19:e00376

    Google Scholar 

  29. Roy S, Luitel H, Sanyal D (2019) First-principles analysis of ferromagnetic properties of molybdenum doped wide-band-gap oxides. Phil Mag Lett 99:326–337

    Article  ADS  CAS  Google Scholar 

  30. Bandyopadhyay B, Luitel H, Sil S, Dhar J, Chakrabarti M, Nath P, Ray PP, Sanyal D (2020) NMR study of defect induced magnetism in methyammonium lead iodide perovskite. Phys Rev B 101:094417

    Article  ADS  CAS  Google Scholar 

  31. Shin D, Kim I, Song S, Seo Y-S, Hwang J, Park S, Choi M, Choi WS (2021) Defect engineering of magnetic ground state in EuTiO3 epitaxial thin film. J Am Cera Soc 104:4606–4613

    Article  CAS  Google Scholar 

  32. Ricca C, Aschauer U (2022) Mechanisms for point defect-induced functionality in complex perovskite oxides. App Phys A 128:1083

    Article  ADS  CAS  Google Scholar 

  33. Rata AD, Herrero-Martin J, Maznichenko IV, Chiabrera FM, Dahm RT, Ostanin S, Lee D, Jalan B, Buczek P, Mertig I, Ernst A, Ionesku AM, Dorr K, Pryds N, Park DS (2022) Defect induced magnetism in homoepitaxial SrTiO3. APL Mat 10:091108

    Article  ADS  CAS  Google Scholar 

  34. Targhia FF, Jalilia YS, Kanjouric F (2018) MAPbI3 and FAPbI3 perovskites as solar cells: case study on structural, electrical and optical properties. Res Phys 10:616–627

    Google Scholar 

  35. Ou Q, Bao X, Zhang Y, Shao H, Xing G, Li X, Shao L, Bao Q (2019) Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Mat Sci 1:268–287

    Google Scholar 

  36. Dhar J, Sil S, Dey A, Sanyal D, Ray PP (2017) Investigation of ion-mediated charge transport methylammonium lead iodide perovskite. J Phys Chem C 121:5515–5522

    Article  CAS  Google Scholar 

  37. Sil S, Moshat S, Ray PP, Dhar J, Sanyal D (2021) Investigating the effect of applied bias on methylammonium lead iodide perovskite by electrical and positron annihilation spectroscopic studies. J Phys D App Phys 54:465502

    Article  ADS  CAS  Google Scholar 

  38. Sil S, Luitel H, Dhar J, Chakrabarti M, Ray PP, Bandyopadhyay B, Sanyal D (2020) Defect induced room temperature ferromagnetism in methylammonium lead iodide. Phys Lett A 384:126278

    Article  CAS  Google Scholar 

  39. Nafradi B, Szirmai P, Spina M, Lee H, Yazyev OV, Arakcheeva A, Chernyshov D, Gibert M, Forro L, Horvath E (2016) Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nat Commun 7:13406

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moshat S, Luitel H, Sanyal D (2021) Half-metallic ferromagnetism in molybdenum doped methylammonium lead halides (MAPbX3, X = Cl, Br, I) system: first-principles study. J Mag Mag Mater 519:167463

    Article  CAS  Google Scholar 

  41. Moshat S, Sanyal D (2021) Ab-initio studies of electronic and magnetic properties of titanium doped methylammonium lead halides. Comp Cond Matter 28:e00570

    Google Scholar 

  42. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  ADS  CAS  Google Scholar 

  43. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  44. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  ADS  CAS  Google Scholar 

  45. Egger DA, Kronik L (2014) Role of dispersive interactions in determining structural properties of organic inorganic halide perovskites: insights from first principles calculations. J Phys Chem Lett 5:2728–2733

    Article  CAS  PubMed  Google Scholar 

  46. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  ADS  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  ADS  MathSciNet  Google Scholar 

  49. Kumar N, Sanyal D, Sundaresan A (2009) Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy. Chem Phys Lett 477:360–364

    Article  ADS  CAS  Google Scholar 

  50. Kirkegaard P, Pedersen NJ, Eldrup M (1989) Report of Riso National Lab (Riso-M2740)

  51. Myler U, Simpson PJ (1997) Survey of elemental specificity in positron annihilation peak shapes. Phys Rev B 56:14303

    Article  ADS  CAS  Google Scholar 

  52. Keeble DJ, Wicklein S, Dittmann R, Ravelli L, Mackie RA, Egger W (2010) Identification of A- and B-site cation vacancy defects in perovskite oxide thin films. Phys Rev Lett 105:226102

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Sarkar A, Chakraborti M, Sanyal D, Bhowmick D, Dechoudhury S, Chakrabarti A, Rakshit T, Ray SK (2012) Photolumincence and positron annihilation spectroscopic investigation on H+ irradiated ZnO single crystal. J Phys Condens Matter 24:325503

    Article  CAS  PubMed  Google Scholar 

  54. Kostrzewa M, Bujnarowski G, Kluza AA, Szuszkiewicz M (2006) Positron lifetime in Hostaphan. Acta Phys Pol A 110:615–620

    Article  ADS  CAS  Google Scholar 

  55. Bergersen B, Stott MJ (1969) The effect of vacancy formation on the temperature dependence of the positron lifetime. Solid State Commun 7:1203–1205

    Article  ADS  CAS  Google Scholar 

  56. Huang H, Bodnarchuk MI, Kershaw SV, Kovalenko MV, Rogach AL (2017) Lead halide perovskite nanocrystals in the research spotlight: stability and defect. ACS Energy Lett 2:2071–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sudipta Moshat gratefully acknowledge HBNI, Department of Atomic Energy, Government of India, for research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SM was involved in measurement, data curation, data analysis, preparation of figures, writing—draft, and writing—review and editing. SS helped in conceptualization, measurements, data analysis, formalism of methodology, supervision, and writing—draft. JD participated in data curation and writing—review and editing. DS was involved in conceptualization, experimental design and carrying out measurement, formalism of methodology, supervision, and writing—review and editing.

Corresponding author

Correspondence to Dirtha Sanyal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshat, S., Dhar, J., Sil, S. et al. Positron annihilation spectroscopic studies of ferromagnetic methylammonium lead iodide perovskite. J Mater Sci 59, 3919–3929 (2024). https://doi.org/10.1007/s10853-024-09450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09450-6

Navigation