Skip to main content
Log in

Magnetic MOF-derived materials with tunable morphology modified by ZnO to activate peroxydisulfate

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sulfonamides are detected in various water environments and threaten aquatic ecosystems. To remove sulfonamides, many previous studies have focused on preparing metal–organic framework-derived carbon materials (MOFs-CMs) applied in persulfate activation. In this study, Fe-based MOFs derived from porous carbon materials were obtained by facile one-pot hydrothermal and pyrolysis. The catalyst can overcome passivation in alkaline environments and showed a high peroxydisulfate (PDS) activation performance. Unlike traditional modifications, ZnO was added during the synthesis process to control the morphology characteristics of the catalyst. FeZn–MOF-CMs in this study displayed a high sulfadiazine removal efficiency of 99.6% in alkaline conditions, and exhibited high resistance to common anions and organic matter. The surface morphology could be controlled by different amounts of ZnO additions and the free radical pathway was the main mechanism in the PDS system. This study provides a facile synthesis method for the preparation of porous carbon materials from Fe-based MOFs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Chen G, Yu Y, Liang L et al (2021) Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: a critical review. J Hazard Mater 408:124461

    Article  CAS  PubMed  Google Scholar 

  2. Xin X, Liu H, Sun J et al (2023) Enhanced photocatalytic activity of Fe-, S- and N-codoped TiO2 for sulfadiazine degradation. Int J Environ Sci Te 20:11865–11876

    Article  CAS  Google Scholar 

  3. Zhao G, Zou J, Chen X et al (2021) Iron-based catalysts for persulfate-based advanced oxidation process: microstructure, property and tailoring. Chem Eng J 421:127845

    Article  CAS  Google Scholar 

  4. Huang W, Xiao S, Zhong H et al (2021) Activation of persulfates by carbonaceous materials: a review. Chem Eng J 418:129297

    Article  CAS  Google Scholar 

  5. Diao Z-H, Huang S-T, Chen X et al (2022) Peroxymonosulfate-assisted photocatalytic degradation of antibiotic norfloxacin by a calcium-based Ag3PO4 composite in water: Reactivity, products and mechanism. J Clean Prod, p 330

  6. Devi P, Das U, Dalai AK (2016) In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci Total Environ 571:643–657

    Article  CAS  PubMed  Google Scholar 

  7. Duan X, Su C, Zhou L et al (2016) Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Appl Catal B 194:7–15

    Article  CAS  Google Scholar 

  8. Zhu K, Wang X, Geng M et al (2019) Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: effect of biochar pyrolysis temperature, performance and mechanism. Chem Eng J 374:1253–1263

    Article  CAS  Google Scholar 

  9. Yao C, Zhang Y, Du M et al (2019) Insights into the mechanism of non-radical activation of persulfate via activated carbon for the degradation of p-chloroaniline. Chem Eng J 362:262–268

    Article  CAS  Google Scholar 

  10. Cheng X, Guo H, Zhang Y et al (2017) Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res 113:80–88

    Article  CAS  PubMed  Google Scholar 

  11. Hu M, Yao Z, Wang X (2017) Graphene-based nanomaterials for catalysis. Ind Eng Chem Res 56:3477–3502

    Article  CAS  Google Scholar 

  12. Yu F, Li Y, Han S, Ma J (2016) Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:365–385

    Article  CAS  PubMed  Google Scholar 

  13. Dong F-X, Yan L, Huang S-T et al (2022) Removal of antibiotics sulfadiazine by a biochar based material activated persulfate oxidation system: performance, products and mechanism. Process Saf Environ Prot 157:411–419

    Article  CAS  Google Scholar 

  14. Chai L, Pan J, Hu Y et al (2021) Rational design and growth of MOF-on-MOF heterostructures. Small 17:1–31

    Article  Google Scholar 

  15. Shi Y, Feng D, Ahmad S et al (2023) Recent advances in metal–organic frameworks–derived carbon-based materials in sulfate radical-based advanced oxidation processes for organic pollutant removal. Chem Eng J 454:140244

    Article  CAS  Google Scholar 

  16. Li Y-X, Han Y-C, Wang C-C (2021) Fabrication strategies and Cr(VI) elimination activities of the MOF-derivatives and their composites. Chem Eng J 405:126648

    Article  CAS  Google Scholar 

  17. Wang F, Gao Y, Liu S-S et al (2023) Fabrication strategies of metal–organic frameworks derivatives for catalytic aqueous pollutants elimination. Chem Eng J 463:142466

    Article  CAS  Google Scholar 

  18. Liu D, Gu W, Zhou L et al (2022) Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem Eng J 427:131503

    Article  CAS  Google Scholar 

  19. Hao M, Qiu M, Yang H et al (2021) Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Environ 760:143333

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Kim J, Malgras V et al (2019) Metal-organic frameworks and their derived materials: emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification. Small 15:1900744

    Article  Google Scholar 

  21. Du C, Zhang Y, Zhang Z et al (2022) Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: a review. Chem Eng J 431:133932

    Article  CAS  Google Scholar 

  22. Liu C, Wang Y, Zhang Y et al (2018) Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: incorporation NH2-group into structure of its MOF precursor. Chem Eng J 354:835–848

    Article  CAS  Google Scholar 

  23. Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  24. Jiang Q, Jiang S, Li H et al (2022) A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chem Eng J 431:133937

    Article  CAS  Google Scholar 

  25. Liu X, Xu H, Wang L et al (2020) Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry. Chem Eng J 381:122559

    Article  CAS  Google Scholar 

  26. Ma D, Wang J, Feng K et al (2022) A green strategy from waste red mud to Fe0-based biochar for sulfadiazine treatment by peroxydisulfate activation. Chem Eng J 446:136944

    Article  CAS  Google Scholar 

  27. Huang ST, Lei YQ, Guo PR et al (2023) Degradation of Levofloxacin by a green zero-valent iron-loaded carbon composite activating peroxydisulfate system: reactivity, products and mechanism. Chemosphere 340:139899

    Article  CAS  PubMed  Google Scholar 

  28. Cui H, Tian Y, Zhang J et al (2021) Enhanced oxidation of sulfadiazine by two-stage ultrasound assisted zero-valent iron catalyzed persulfate process: factors and pathways. Chem Eng J 417:128152

    Article  CAS  Google Scholar 

  29. Dong H, Zhang C, Deng J et al (2018) Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res 135:1–10

    Article  CAS  PubMed  Google Scholar 

  30. Bo L, Hiroshi S, Tomoki A, Qiang X (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391

    Article  Google Scholar 

  31. Shuai Y, Huang X, Zhang B et al (2023) MOF-5@Ni Derived ZnO@Ni3ZnC0.7/PMS system for organic matter removal: a thorough understanding of the adsorption–degradation process. Engineering 24:253–263.

  32. Guo L, Zhao L, Tang Y et al (2022) An iron–based biochar for persulfate activation with highly efficient and durable removal of refractory dyes. J Environ Chem Eng 10:106979

    Article  CAS  Google Scholar 

  33. Tan W, Ruan Y, Diao Z et al (2021) Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber. Chemosphere 280:130626

    Article  CAS  PubMed  Google Scholar 

  34. Li W, Liu B, Wang Z et al (2020) Efficient activation of peroxydisulfate (PDS) by rice straw biochar modified by copper oxide (RSBC-CuO) for the degradation of phenacetin (PNT). Chem Eng J 395:125094

    Article  CAS  Google Scholar 

  35. Shao P, Pei J, Tang H et al (2021) Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force. J Hazard Mater 403:123705

    Article  CAS  PubMed  Google Scholar 

  36. Wu Q, Siddique MS, Yang Y et al (2022) Facile and scalable synthesis of Fe-based metal organic frameworks for highly efficient photo-Fenton degradation of organic contaminants. J Clean Prod 374:134033

    Article  CAS  Google Scholar 

  37. Huang P, Zhang P, Wang C et al (2022) Enhancement of persulfate activation by Fe-biochar composites: synergism of Fe and N-doped biochar. Appl Catal B 303:120926

    Article  CAS  Google Scholar 

  38. Zhang Y, Zhou J, Chen X et al (2019) Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Ssnergistic effect and degradation pathway. Chem Eng J 369:745–757

    Article  CAS  Google Scholar 

  39. Mei W, Song H, Tian Z et al (2019) Efficient photo-Fenton like activity in modified MIL-53(Fe) for removal of pesticides: Regulation of photogenerated electron migration. Mater Res Bull 119:110570

    Article  CAS  Google Scholar 

  40. Diao Z-H, Wei Q, Guo P-R et al (2018) Photo-assisted degradation of bisphenol A by a novel FeS2@SiO2 microspheres activated persulphate process: synergistic effect, pathway and mechanism. Chem Eng J 349:683–693

    Article  CAS  Google Scholar 

  41. Sun J, Wan J, Wang Y et al (2022) Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole: design, degradation pathways, and mechanism. J Hazard Mater 429:128299

    Article  CAS  PubMed  Google Scholar 

  42. Guo L, Zhao L, Tang Y et al (2023) Peroxydisulfate activation using Fe, Co co-doped biochar and synergistic effects on tetracycline degradation. Chem Eng J 452:139381

    Article  CAS  Google Scholar 

  43. Monteagudo JM, Durán A, González R, Expósito AJ (2015) In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Appl Catal B 176–177:120–129

    Article  Google Scholar 

  44. Oh W-D, Dong Z, Hu Z-T, Lim T-T (2015) A novel quasi-cubic CuFe2O4–Fe2O3 catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation. J Mater Chem A 3:22208–22217

    Article  CAS  Google Scholar 

  45. Li X, Liao F, Ye L, Yeh L (2020) Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism. J Hazard Mater 398:122938

    Article  CAS  PubMed  Google Scholar 

  46. Fang G, Gao J, Dionysiou DD et al (2013) Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environ Sci Technol 47:4605–4611

    Article  CAS  PubMed  Google Scholar 

  47. Diao Z-H, Dong F-X, Yan L et al (2020) Synergistic oxidation of Bisphenol A in a heterogeneous ultrasoundenhanced sludge biochar catalyst/persulfate process: reactivity and mechanism. J Hazard Mater 384:121385

    Article  CAS  PubMed  Google Scholar 

  48. Diao Z-H, Chu W (2021) FeS2 assisted degradation of atrazine by bentonite-supported nZVI coupling with hydrogen peroxide process in water: performance and mechanism. Sci Total Environ 754:142155

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Ao Z, Sun H et al (2016) Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Appl Catal B 198:295–302

    Article  CAS  Google Scholar 

  50. Li Y, Li J, Pan Y et al (2020) Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole. Chem Eng J 384:123361

    Article  CAS  Google Scholar 

  51. Liang C, Wang Z-S, Bruell CJ (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66:106–113

    Article  CAS  PubMed  Google Scholar 

  52. Ma D, Yang Y, Liu B et al (2021) Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation. Chem Eng J 408:127992

    Article  CAS  Google Scholar 

  53. Yang S, Xiao T, Zhang J et al (2015) Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution. Sep Purif Technol 143:19–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key R&D Program of China (No. 2023YFC2600121), the funding of "Double world-class project" (CY22623101) from Yunnan University, the Research Fund from Beijing University of Civil Engineering and Architecture (00331614016)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Min Zhang: Conceptualization, Methodology, Data curation, Investigation, Visualization, Original draft preparation. Xingping Deng: Software Methodology, Writing—review & editing. Hua Yang: Methodology, Writing—review & editing. Yao Ding: Writing—review & editing. Longzheng Ran: Writing—review & editing. Liang Zhang: Conceptualization, Data curation, Funding acquisition, Supervision.

Corresponding authors

Correspondence to Hua Yang or Liang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Deng, X., Yang, H. et al. Magnetic MOF-derived materials with tunable morphology modified by ZnO to activate peroxydisulfate. J Mater Sci 59, 5345–5358 (2024). https://doi.org/10.1007/s10853-024-09438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09438-2

Navigation