Skip to main content
Log in

Synergistic effect in XMoO4 (X: Ni, Zn) nanorods derived from 2D molybdenum-based metal-organic frameworks boosting supercapacitive performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present a novel approach for synthesizing XMoO4 (X: Ni, Zn) using metal–organic frameworks as templates. Our findings reveal orthorhombic structure of MoO3 converted to triclinic and monoclinic crystalline phases for ZnMoO4 and NiMoO4, respectively. XMoO4 nanorods have higher band gap than MoO3, with an optical band gap range of 3.20–3.80 eV. The specific surface area was estimated to be 27.6, 44.7 and 63.6 m2 g−1 for MoO3, ZnMoO4, and NiMoO4, respectively. Electrochemical results demonstrated that Ni2+ and Zn2+ incorporation improved the supercapacitive performance of MoO3 and MOF-derived NiMoO4 nanorods disclosed superior specific capacitance of 2302.5 F g−1 at 1 A g−1 with cycling stability of 93% after 5000 cycles. A maximum energy density of 66.4 Wh kg−1 at 749.3 W kg−1 was achieved for NiMoO4//AC ASC. The research established that NiMoO4 nanorods have considerable potential for supercapacitor devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Gahlawat S, Singh J, Yadav AK, Ingole PP (2019) Exploring Burstein-Moss type effects in nickel doped hematite dendrite nanostructures for enhanced photo-electrochemical water splitting. Phys Chem Chem Phys 21:20463–20477. https://doi.org/10.1039/C9CP04132J

    Article  CAS  PubMed  Google Scholar 

  2. Gou J, Liu W, Tang A (2020) A renewable and biodegradable nanocellulose-based gel polymer electrolyte for lithium-ion battery. J Mater Sci 55:10699–10711. https://doi.org/10.1007/s10853-020-04667-7

    Article  CAS  ADS  Google Scholar 

  3. Koodehi SE, Ghodsi FE, Mazloom J (2022) Mixed metallic NiFe/Mn-MOF, and derived spinel Ni0.5Fe0.5Mn2O4 as high-performance electrochemical electrodes. Int J Energy Res 46:24368–24380. https://doi.org/10.1002/er.8752

    Article  CAS  Google Scholar 

  4. Wang M, Fan R, Bo H, Cheng Zh, Zou W, He J, Ma X (2023) Tuning the photovoltaic performance of perovskite solar cells by simple incorporation of ZnO QDs into the mesoporous titania layer. J Mater Sci 58:6267–6280. https://doi.org/10.1007/s10853-023-08421-7

    Article  CAS  ADS  Google Scholar 

  5. Zhang Q, Zhou J, Zeng G, Ren S (2023) Effect of lanthanum and yttrium doped LiFePO4 cathodes on electrochemical performance of lithium-ion battery. J Mater Sci 58:8463–8477. https://doi.org/10.1007/s10853-023-08542-z

    Article  CAS  ADS  Google Scholar 

  6. Cui X, Chen J, Sun Z, Lei W, Peng Q, Xiao B, Zhao L, Zheng H, Wang Y, Wang J, Chen X, Zhang Q, Chen S (2023) A general route for encapsulating monodispersed transition metal phosphides into carbon multi-chambers toward high-efficient lithium-ion storage with underlying mechanism exploration. Adv Funct Mater 33:2212100. https://doi.org/10.1002/adfm.202212100

    Article  CAS  Google Scholar 

  7. Wang Y, Kretschmer K, Zhang J, Monda AK, Guo X, Wang G (2016) Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Adv 6:57098–57102. https://doi.org/10.1039/C6RA11809G

    Article  CAS  ADS  Google Scholar 

  8. Theerthagiri J, Murthy AP, Lee SJ, Karuppasamy K, Arumugam SR, Yu Y, Hanafiah MM, Kim HSK, Mittal V, Choi MY (2021) Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram Int 47:4404–4425. https://doi.org/10.1016/j.ceramint.2020.10.098

    Article  CAS  Google Scholar 

  9. Sabeeh H, Zulfiqar S, Aadil M, Shahid M, Shakir I, Khan MA, Warsi MF (2020) Flake-like MoS2 nano-architecture and its nanocomposite with reduced Graphene Oxide for hybrid supercapacitors applications. Ceram Int 46:21064–21072. https://doi.org/10.1016/j.ceramint.2020.05.179

    Article  CAS  Google Scholar 

  10. Ike IS, Sigalasab I, Iyuke S (2016) Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review. Phys Chem Chem Phys 18:661–680. https://doi.org/10.1039/C5CP05459A

    Article  CAS  PubMed  Google Scholar 

  11. Cheng J, Lu Y, Qiu K, Yan H, Hou X, Xu J, Han L, Liu X, Kime JK, Luo Y (2015) Mesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Phys Chem Chem Phys 17:17016–17022. https://doi.org/10.1039/C5CP01629K

    Article  CAS  PubMed  Google Scholar 

  12. Wang Ch, Li X, Yang W, Xu Y, Pang H (2021) Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. Chin Chem Lett 32:2909–2913. https://doi.org/10.1016/j.cclet.2021.04.017

    Article  CAS  Google Scholar 

  13. Sun X, Liu Y, Xu Zh, Gao X, Yin X, Ma X (2022) Tailoring activation of CoNiO nanoparticles/porous carbon nanofibers by atomic doping for high performance supercapacitors. Phys Chem Chem Phys 24:29817–29826. https://doi.org/10.1039/D2CP04180D

    Article  CAS  PubMed  Google Scholar 

  14. Tang X, Liu Ch, Wang H, Lv LP, Sun W, Wang Y (2023) Pristine metal-organic frameworks for next-generation batteries. Coord Chem Rev 494:215361. https://doi.org/10.1016/j.ccr.2023.215361

    Article  CAS  Google Scholar 

  15. Mohanty A, Jaihindh D, Fu YP, Senanayak SP, Mende LS, Ramadoss A (2021) An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. J Power Sources 488:229444. https://doi.org/10.1016/j.jpowsour.2020.229444

    Article  CAS  Google Scholar 

  16. Zhang H, Wang J, Sun Y, Zhang X, Yang H, Lin B (2021) Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device. J Alloy Compd 879:160423. https://doi.org/10.1016/j.jallcom.2021.160423

    Article  CAS  Google Scholar 

  17. Lu XF, Fang Y, Luan D, Lou XWD (2021) Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett 21:1555–1565. https://doi.org/10.1021/acs.nanolett.0c04898

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Sanchez BM, Brousse Th, Castro CR, Nicolosi V, Grant PS (2013) An investigation of nanostructured thin film ˛-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim Acta 91:253–260. https://doi.org/10.1016/j.electacta.2012.11.127

    Article  CAS  Google Scholar 

  19. Han Y, Rheem Y, Lee K, Kim H, Myung NV (2018) Synthesis and characterization of orthorhombic-MoO3 nanofibers with controlled morphology and diameter. J Ind Eng Chem 62:231–238. https://doi.org/10.1016/j.jiec.2017.12.063

    Article  CAS  Google Scholar 

  20. Wang D, Du G, Han D, Su Q, Zhang M, Ding Sh, Xu B (2021) Electrochemical properties and reaction mechanism of ZnMoO4 nanotubes as anode materials for sodium-ion batteries. J Alloy Compd 859:157792. https://doi.org/10.1016/j.jallcom.2020.157792

    Article  CAS  Google Scholar 

  21. Safartoobi A, Mazloom J, Ghodsi FE (2024) Novel electrospun bead-like Ag2MoO4 nanofibers coated on Ni foam for visible light-driven heterogeneous photocatalysis and high-performance supercapacitor electrodes. Phys Chem Chem Phys 26:430–444. https://doi.org/10.1039/D3CP04751B

    Article  CAS  Google Scholar 

  22. Zhang J, Mao X, Xiao W, Zhuang Y (2017) Photocatalytic degradation of sulfamethazine by graphitic carbon nitride-modified zinc molybdate: Effects of synthesis method on performance, degradation kinetics, and mechanism. Chin J Catal 38:2009–2020. https://doi.org/10.1016/S1872-2067(17)62935-8

    Article  CAS  Google Scholar 

  23. Zhang SW, Yin BS, Liu Ch, Wang ZB, Gu DM (2018) NiMoO4 nanowire arrays and carbon nanotubes film as advanced electrodes for high-performance supercapacitor. Appl Surf Sci 458:478–488. https://doi.org/10.1016/j.apsusc.2018.07.110

    Article  CAS  ADS  Google Scholar 

  24. Guo D, Guan Zh, Hu D, Bian L, Song Y, Sun X, Liu X (2021) Boosting the capacitive performance of hierarchical cobalt molybdate hybrid electrodes for asymmetric supercapacitors. J Mater Sci 56:10965–10978. https://doi.org/10.1007/s10853-021-05945-8

    Article  CAS  ADS  Google Scholar 

  25. Lu Y, Zhao M, Luo R, Yu Q, Lv J, Wang W, Yan H, Peng T, Liu X, Luo Y (2018) Electrospun porous MnMoO4 nanotubes as high-performance electrodes for asymmetric supercapacitors. J Solid State Electrochem 22:657–666. https://doi.org/10.1007/s10008-017-3781-2

    Article  CAS  Google Scholar 

  26. Safartoobi A, Mazloom J, Ghodsi FE (2023) Silver/molybdenum metal-organic framework derived Ag2MoO4 nanoparticles as novel electrode for high-performance supercapacitor. J Energy Storage 68:107818. https://doi.org/10.1016/j.est.2023.107818

    Article  Google Scholar 

  27. Harichandran G, Radha S, Yesuraj J, Muthuraaman B (2021) Synthesis and characterization of cobalt molybdate dihydrate nanorods arrays for supercapacitor electrode application. Appl Phys A 127:627. https://doi.org/10.1007/s00339-021-04748-7

    Article  CAS  ADS  Google Scholar 

  28. Singu BS, Chitumalla RK, Mandal D, Kim YA, Kim GH, Chung HT, Jang J, Kim H (2023) Development of metal-organic framework-derived NiMo-MoO3-x porous nanorod for efficient electrocatalytic hydrogen evolution reactions. Appl Catal B Environ 328:122421. https://doi.org/10.1016/j.apcatb.2023.122421

    Article  CAS  Google Scholar 

  29. Zhang G, Lu Ch, Li Ch, Li Sh, Zhao X, Nie K, Wang J, Feng K, Zhong J (2023) CoMoO4-modified hematite with oxygen vacancies for high-efficiency solar water splitting. Phys Chem Chem Phys 25:13410–13416

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Bai J, Wang H (2018) Synthesis of hierarchical free-standing NiMoO4/reduced graphene oxide membrane for high-performance lithium storage. J Solid State Electrochem 22:2659–2669. https://doi.org/10.1007/s10008-018-3949-4

    Article  CAS  Google Scholar 

  31. Chen Y, Peng H, Jiang H, Zhang J, Chen X, Zhang Y, Ge D, Guo H (2020) Study on the superior lithium storage performance of carbon/Sn–Mo oxide composite as lithium-ion battery anode. J Mater Sci 55:14373–14388. https://doi.org/10.1007/s10853-020-04902-1

    Article  CAS  ADS  Google Scholar 

  32. Kim SS, Ogura S, Ikuta H, Uchimoto Y, Wakihara M (2002) Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery. Solid State Ionics 146:249–256. https://doi.org/10.1016/S0167-2738(01)01013-X

    Article  CAS  Google Scholar 

  33. Ma Q, Chu Sh, Li H, Guo J, Zhang Q, Lin Z, Wang J, Che Q (2021) Bi-component MOF-derived high-sensitive triethylamine gas sensors based on MoO3/ZnMoO4/CoMoO4 hierarchical structures effectuated by tunable surface/interface transfer behavior. J Mater Sci 56:7906–7919. https://doi.org/10.1007/s10853-021-05773-w

    Article  CAS  ADS  Google Scholar 

  34. Li P, Ruan Ch, Xu J, Xie Y (2019) High-performance asymmetric supercapacitor electrode based on three-dimensional ZnMoO4/CoO nanohybrid on nickel foam. Nanoscale 11:13639–13649. https://doi.org/10.1039/C9NR03784E

    Article  CAS  PubMed  Google Scholar 

  35. Xiao K, Xia L, Liu G, Wang S, Ding LX, Wang H (2015) Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. Mater Chem A 3:6128. https://doi.org/10.1039/c5ta00258c

    Article  CAS  Google Scholar 

  36. He Ch, Yin W, Li X, Zheng J, Tang B, Rui Y (2021) Molybdenum disulfide synthesized by molybdenum-based metalorganic framework with high activity for sodium ion battery. Electrochim Acta 365:137353. https://doi.org/10.1016/j.electacta.2020.137353

    Article  CAS  Google Scholar 

  37. Chang H, Zhou Y, Zhang S, Zheng X, Xu Q (2021) CO2-induced 2D Ni-BDC metal-organic frameworks with enhanced photocatalytic CO2 reduction activity. Adv Mater Interfaces 8:2100205. https://doi.org/10.1002/admi.202100205

    Article  CAS  Google Scholar 

  38. Kang X, Zhu Q, Sun X, Hu J, Zhang J, Liu Zh, Han B (2016) Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal–organic framework cathode. Chem Sci 7:266. https://doi.org/10.1039/c5sc03291a

    Article  CAS  PubMed  Google Scholar 

  39. Gao Sh, Sui Y, Wei F, Qi J, Meng Q, He Y (2018) Facile synthesis of nickel metal–organic framework derived hexagonal flaky NiO for supercapacitors. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-017-8169-7

    Article  Google Scholar 

  40. Zaman N, Iqbal N, Noor T (2023) An efficient and stable electrocatalyst derived from Ni−Mo−Co MOF for methanol oxidation reaction. ChemCatChem 15:202300502. https://doi.org/10.1002/cctc.202300502

    Article  CAS  Google Scholar 

  41. Amali RKA, Lim HN, Ibrahim I, Zainal Z, Ahmad SAA (2022) A copper-based metal–organic framework decorated with electrodeposited Fe2O3 nanoparticles for electrochemical nitrite sensing. Microchim Acta 189:356. https://doi.org/10.1007/s00604-022-05450-y

    Article  CAS  Google Scholar 

  42. Zhang X, Yang S, Lu W, Lei D, Tian Y, Guo M, Mi P, Qu N, Zhao Y (2021) MXenes induced formation of Ni-MOF microbelts for high-performance Supercapacitors. J Colloid Interface Sci 592:95–102. https://doi.org/10.1016/j.jcis.2021.02.042

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Chen L, Wang HF, Caixia Li QXu (2020) Bimetallic metal–organic frameworks and their derivatives. Chem Sci 11:5369–5403. https://doi.org/10.1039/D0SC01432J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim TH, Park YJ, Lee JY, Han S, Hong JH, Jang HS, Kim DH (2022) Structure and electrochemical property of single-crystal α-MoO3 microbelts synthesized by a solid-state reaction. J Alloy Compd 924:166427. https://doi.org/10.1016/j.jallcom.2022.166427

    Article  CAS  Google Scholar 

  45. Singh A, Kumar S, Ahmed B, Singh RK, Ojha AK (2019) Temperature induced modifications in shapes and crystal phases of MoO3 for enhanced photocatalytic degradation of dye waste water pollutants under UV irradiation. J Alloy Compd 806:1368–1376. https://doi.org/10.1016/j.jallcom.2019.07.272

    Article  CAS  Google Scholar 

  46. Reddy BJ, Vickraman P, Justin AS (2019) A facile synthesis of novel α-ZnMoO4 microspheres as electrode material for supercapacitor applications. Bull Mater Sci. https://doi.org/10.1007/s12034-019-1749-9

    Article  Google Scholar 

  47. Ma Q, Li X, Li G, Shao Zh (2020) Synthesis and electrochemical properties of cubic-like ZnMoO4 anode materials. J Mater Sci 55:13905–13915. https://doi.org/10.1007/s10853-020-04969-w

    Article  CAS  ADS  Google Scholar 

  48. Peng Sh, Li L, Wu HB, Madhavi S, Lou XW (2014) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater. https://doi.org/10.1002/aenm.201401172

    Article  Google Scholar 

  49. Yesuraj J, Padmaraj O, Suthanthiraraj SA (2020) Synthesis, characterization, and improvement of supercapacitor properties of NiMoO4 nanocrystals with polyaniline. J Inorg Organomet Polym Mater 30:310–321. https://doi.org/10.1007/s10904-019-01189-x

    Article  CAS  Google Scholar 

  50. Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13(1):251–256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  ADS  Google Scholar 

  51. Li H, Zhang J, Yao Y, Miao X, Chen J, Tang J (2019) Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants. Environ Pollut 255:113337. https://doi.org/10.1016/j.envpol.2019.113337

    Article  CAS  PubMed  Google Scholar 

  52. Chang Li G, Liu PF, Liu R, Liu M, Kai Tao SR, Zhu MKWu, Yia FY, Han L (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans 45:13311–13316. https://doi.org/10.1039/C6DT01791F

    Article  CAS  Google Scholar 

  53. Zhang X, Zeng X, Yang M, Qi Y (2014) Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl Mater Interfaces 6:1125–1130. https://doi.org/10.1021/am404724u

    Article  CAS  PubMed  Google Scholar 

  54. Yin J, Min F, Jia L, Zhang D, Zhang Q, Xie J (2017) Preparation and photoluminescence properties of MMoO4 (M = Cu, Ni, Zn) nanoparticles synthesized via electrolysis. J Mol Struct 1127:777–783. https://doi.org/10.1016/j.molstruc.2016.08.020

    Article  CAS  ADS  Google Scholar 

  55. Seevakan K, Manikandan A, Devendran P, Shameem A, Alagesan T (2018) Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram Int 44:13879–13887. https://doi.org/10.1016/j.ceramint.2018.04.235

    Article  CAS  Google Scholar 

  56. Chithambararaj A, Sanjini NS, Velmathi S, Bose AC (2013) Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys Chem Chem Phys 15(35):14761. https://doi.org/10.1039/c3cp51796a

    Article  CAS  PubMed  Google Scholar 

  57. Rammal MB, Omanovic S (2020) Synthesis and characterization of NiO, MoO3, and NiMoO4 nanostructures through a green, facile method and their potential use as electrocatalysts for water splitting. Mater Chem Phys 255:123570. https://doi.org/10.1016/j.matchemphys.2020.123570

    Article  CAS  Google Scholar 

  58. Tauc JC, Optical properties of solids, North-Holland, Amsterdam

  59. Safartoobi A, Mazloom J, Ghodsi FE, Boustani K (2023) Surface morphology, optical band gap and magnetic behavior of Cu(1–x)MnxFe2O4 nanofibers prepared by sol-gel electrospinning. J Magn Magn Mater 569:170397. https://doi.org/10.1016/j.jmmm.2023.170397

    Article  CAS  Google Scholar 

  60. Kumar ShO, Shukla V, Srivastava SK (2019) Role of electronegativity on the bulk modulus, magnetic moment and band gap of Co2MnAl based Heusler alloys. J Sci Adv Mater Devices 4:158–162. https://doi.org/10.1016/j.jsamd.2019.02.001

    Article  Google Scholar 

  61. Li K, Li Y, Xue D (2012) Band gap engineering of crystal materials: band gap estimation of semiconductors via electronegativity. Funct Mater Lett 5:2060002. https://doi.org/10.1142/S1793604712600028

    Article  ADS  Google Scholar 

  62. Ray SK, Hur J (2021) A review on monoclinic metal molybdate photocatalyst for environmental remediation. J Ind Eng Chem 101:28–50. https://doi.org/10.1016/j.jiec.2021.06.027

    Article  CAS  Google Scholar 

  63. Oliveira CA, Volanti DP, Nogueira AE, Zamperini CA, Vergani CE, Longo E (2017) Well-designed β-Ag2MoO4 crystals with photocatalytic and antibacterial activity. Mater Des 115:73–81. https://doi.org/10.1016/j.matdes.2016.11.032

    Article  CAS  Google Scholar 

  64. Miao Ch, Fang Y, Zhu K, Zhou Ch, Ye K, Yan J, Cao D, Wanga G, Xu P, Xie Ch (2021) Binder-free ultrathin α-MnSe nanosheets for high performance supercapacitor. J Alloy Compd 885:161004. https://doi.org/10.1016/j.jallcom.2021.161004

    Article  CAS  Google Scholar 

  65. Ghaziani MM, Mazloom J, Ghodsi FE (2022) Effect of Mg substitution on the physical and electrochemical properties of Co3O4 thin films as electrode material with enhanced cycling stability for pseudocapacitors. J Sol-Gel Sci Technol 103:244–257. https://doi.org/10.1007/s10971-022-05832-x

    Article  CAS  Google Scholar 

  66. Peng T, Yi H, Sun P, Jing Y, Wang R, Wang H, Wang X (2016) In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. J Mater Chem A 4:8888–8897. https://doi.org/10.1039/C6TA02410F

    Article  CAS  Google Scholar 

  67. Wang Y, Liu Y, Wang H, Liu W, Li Y, Zhang J, Hou H, Yang J (2019) Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Appl Energy Mater 2:2063–2071. https://doi.org/10.1021/acsaem.8b02128

    Article  CAS  Google Scholar 

  68. Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44:2376–2404. https://doi.org/10.1039/C4CS00350K

    Article  CAS  PubMed  Google Scholar 

  69. Lee JM, Choi C, Kim JH, de Andrade MJ, Baughman RH, Kim SJ (2018) Biscrolled carbon nanotube yarn structured silver-zinc battery. Sci Rep 8(1):11150. https://doi.org/10.1038/s41598-018-29266-0

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Cai D, Liu B, Wang D, Liu Y, Wang L, Li H, Wang Y, Wang C, Li Q, Wang T (2014) Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim Acta 125:294–301. https://doi.org/10.1016/j.electacta.2014.01.049

    Article  CAS  Google Scholar 

  71. Li Q, Li Y, Zhao J, Zhao Sh, Zhou J, Chen Ch, Tao K, Liu R, Han L (2019) Ultrathin nanosheet-assembled hollow microplate CoMoO4 array derived from metal-organic framework for supercapacitor with ultrahigh areal capacitance. J Power Sources 430:51–59. https://doi.org/10.1016/j.jpowsour.2019.05.011

    Article  CAS  Google Scholar 

  72. Nti F, Anang DA, Han JI (2018) Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor. J Alloy Compd 742:342–350. https://doi.org/10.1016/j.jallcom.2018.01.289

    Article  CAS  Google Scholar 

  73. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J Phys Chem C 111:14925–14931. https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  74. Norouzi O, Pourhosseini SEM, Naderi HR, Maria FD, Dutta A (2021) Integrated hybrid architecture of metal and biochar for high performance asymmetric supercapacitors. Sci Rep 11:5387. https://doi.org/10.1038/s41598-021-84979-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Safari M, Mazloom J (2023) Outstanding energy storage performance in Co–Fe bimetallic metal-organic framework spindles via decorating with reduced graphene oxide nanosheets. J Energy Stor 58:106390. https://doi.org/10.1016/j.est.2022.106390

    Article  Google Scholar 

  76. Choubari MSh, Mazloom J, Ghodsi FE (2022) Supercapacitive properties, optical band gap, and photoluminescence of CeO2–ZnO nanocomposites prepared by eco-friendly green and citrate sol-gel methods: a comparative study. Ceram Int 48:21344–21354. https://doi.org/10.1016/j.ceramint.2022.04.100

    Article  CAS  Google Scholar 

  77. Zhao W, Zeng Y, Zhao Y, Wu X (2023) Recent advances in metal-organic framework-based electrode materials for supercapacitors: a review. J Energy Stor 62:106934. https://doi.org/10.1016/j.est.2023.106934

    Article  Google Scholar 

  78. Jiang F, Li W, Zou R, Liu Q, Xu K, An L, Hu J (2014) MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 7:72–79. https://doi.org/10.1016/j.nanoen.2014.04.007

    Article  CAS  Google Scholar 

  79. Ji H, Liu X, Liu Zh, Yan B, Chen L, Xie Y, Liu Ch, Hou W, Yang G (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Func Mater 25:1886–1894. https://doi.org/10.1002/adfm.201404378

    Article  CAS  Google Scholar 

  80. Gurusamy H, Sivasubramanian R, Johnbosco Y, Bhagavathiachar M (2021) Morphology-controlled synthesis of one-dimensional zinc molybdate nanorods for high-performance pseudocapacitor electrode application. Chem Pap 75:1715–1726. https://doi.org/10.1007/s11696-020-01420-x

    Article  CAS  Google Scholar 

  81. Reddy BJ, Vickraman P, Justin AS (2018) Investigation of novel zinc molybdate–graphene nanocomposite for supercapacitor applications. Appl Phys A 124:409. https://doi.org/10.1007/s00339-018-1793-0

    Article  CAS  ADS  Google Scholar 

  82. Gao YP, Huang KJ, Zhang ChX, Song ShSh, Wu X (2018) High-performance symmetric supercapacitor based on flower-like zinc molybdate. J Alloy Compd 731:1151–1158. https://doi.org/10.1016/j.jallcom.2017.10.161

    Article  CAS  Google Scholar 

  83. Thiagarajan K, Bavani Th, Arunachalam P, Lee SJ, Theerthagiri J, Madhavan J, Pollet BG, Choi MY (2020) Nanofiber NiMoO4/g-C3N4 composite electrode materials for redox supercapacitor applications. Nanomaterials 10:392. https://doi.org/10.3390/nano10020392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu Z, Zang L, Chu M, He Y, Ren D, Saha P, Cheng Q (2022) Oxygen-vacancy and phosphorus-doping enriched NiMoO4 nanoarrays for high-energy supercapacitors. J Energy Stor 54:105314. https://doi.org/10.1016/j.est.2022.105314

    Article  Google Scholar 

  85. Nguyen VH, Shim JJ (2015) Three-dimensional nickel foam/graphene/NiCo2O4 as highperformance electrodes for supercapacitors. J Power Sour 273:110–117. https://doi.org/10.1016/j.jpowsour.2014.09.031

    Article  CAS  Google Scholar 

  86. Xu X, Zhao CH, Liu X, Liu Y, Dong P, Itani C (2020) Metal–organic framework-derived ZnMoO4 nanosheet arrays for advanced asymmetric supercapacitors. J Mater Sci: Mater Electron 31:3631–3641. https://doi.org/10.1007/s10854-020-02920-y

    Article  CAS  Google Scholar 

  87. Noh J, Yoon ChM, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478. https://doi.org/10.1016/j.carbon.2017.02.033

    Article  CAS  Google Scholar 

  88. Wang Y, Zhong Z, Chen Y, Ng ChTh, Lin J (2011) Controllable synthesis of co3o4 from nanosize to microsize with large-scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect. Nano Res 4:695–704. https://doi.org/10.1007/s12274-011-0125-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Council of University of Guilan for the financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Mr. A. Safartoobi contributed to investigation, formal analysis, and writing—original draft preparation, Dr. j. Mazloom contributed to supervision, methodology, validation, writing—review and editing, and Prof. F. E. Ghodsi contributed to review and editing.

Corresponding author

Correspondence to J. Mazloom.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 507 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safartoobi, A., Mazloom, J. & Ghodsi, F.E. Synergistic effect in XMoO4 (X: Ni, Zn) nanorods derived from 2D molybdenum-based metal-organic frameworks boosting supercapacitive performance. J Mater Sci 59, 3809–3828 (2024). https://doi.org/10.1007/s10853-024-09432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09432-8

Navigation