Skip to main content
Log in

Composition tuning of CdSeXS1−X nanocrystals for enhancing the photovoltaic performance of CdS/CdSeXS1−X quantum dot-sensitized solar cells

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, CdSexS1−x QDs with X different value and compositions were prepared for utilization as light absorbing in the CdS/CdSexS1−x multiple quantum dot-sensitized solar cells. These QDs with X different value were deposited on the FTO/TiO2NPs/CdS/CdSeXS1−X/ZnS photoanode through the successive ionic layer absorption and reaction (SILAR) method. Then the photovoltaic parameters were measured and extracted by different photovoltaic analyses. The X value was altered in the range of 0.1–0.4, and the corresponding cells were fabricated. According to the results, the best efficiency was achieved for the QDSCs with CdSeXS1-X, X = 0.3, light absorbing layer. The efficiency was increased about 39% compared to the reference CdSexS1-x free cell. The process of synthesis and deposition of CdSeXS1-X QDs was carried out in 5 cycles. In the following, the number of SILAR cycles was optimized for the X appropriate ratio. According to measurements, the FTO/TiO2NPs/CdS/CdSe0.3S0.7/ZnS photoanode structure with the CdSe0.3S0.7 layer deposited in 3 SILAR cycles, created and efficiency enhancement about 38% compared to the pervious maximum state. The IPCE curves were measured, and corresponding APCEs were extracted which showed a maximum quantum conversion efficiency about 75%, while the spectrum is spread in the wavelength range of 400–700 nm. This improvement in photovoltaic characteristics can be attributed to the broader light absorption region and higher light-harvesting efficiency. Besides, due to the performed calculations a cascade energy band diagram is formed between the CdS and CdSeS sensitizing layers which is suitable for well transfer of photogenerated electron–hole pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure  3
Figure  4
Figure 5
Figure  6
Figure  7
Figure 8
Figure 9
Figure  10
Figure 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rasin AT (2014) High efficiency quantum Dot-sensitised Solar Cells by Material Science and Device Architecture. Ph. D Thesis, Queensland University of Technology, Brisbane, Australia.

  2. Ambade SB et al (2014) Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer. J Nanosci Nanotechnol 14(11):8561–8566

    Article  CAS  PubMed  Google Scholar 

  3. Marandi M, Bayat S, Sabet MNS (2019) Hydrothermal growth of a composite TiO2 hollow spheres/TiO2 nanorods powder and its application in high performance dye-sensitized solar cells. J Electroanal Chem 833:143–150

    Article  CAS  Google Scholar 

  4. Muñoz-García AB et al (2021) Dye-sensitized solar cells strike back. Chem Soc Rev 50(22):12450–12550

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khorasani A, Marandi M, Taghavinia N (2023) Electron transport engineering with different types of titanium dioxide nanostructures in perovskite solar cells. J Alloy Compd 936:168055

    Article  CAS  Google Scholar 

  6. Shilpa G et al (2023) Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): a review. Mater Sci Energy Technol 6:533–546

    CAS  Google Scholar 

  7. Suhaimi S et al (2015) Materials for enhanced dye-sensitized solar cell performance: electrochemical application. Int J Electrochem Sci 10(4):2859–2871

    Article  CAS  Google Scholar 

  8. Boro B et al (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sustain Energy Rev 81:2264–2270

    Article  CAS  Google Scholar 

  9. Bhatti K et al (2019) Analysis of multilayer based TiO2 and ZnO photoanodes for dye-sensitized solar cells. Mater Res Express 6(7):075902

    Article  ADS  CAS  Google Scholar 

  10. Senthilkumar R et al (2023) CoxMo (1–x) S2 intermixed reduced graphene oxide as efficient counter electrode materials for high-performance dye-sensitized solar cells. Int J Hydrogen Energy 48(15):5901–5914

    Article  CAS  Google Scholar 

  11. Balanay MP et al (2016) The photovoltaic performances of PVdF-HFP electrospun membranes employed quasi-solid-state dye sensitized solar cells. J Nanosci Nanotechnol 16(1):581–587

    Article  PubMed  Google Scholar 

  12. Rizwan M, Mingsukang MAB, Akhtaruzzaman M (2022) Quantum dot-sensitized solar cells. Comprehensive Guide on Organic and Inorganic Solar Cells. Elsevier, pp 245–271

    Chapter  Google Scholar 

  13. Shirasaki Y et al (2013) Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7(1):13–23

    Article  ADS  CAS  Google Scholar 

  14. Pan Z et al (2014) High-efficiency “green” quantum dot solar cells. J Am Chem Soc 136(25):9203–9210

    Article  CAS  PubMed  Google Scholar 

  15. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134(5):2508–2511

    Article  CAS  PubMed  Google Scholar 

  16. Wang J et al (2013) Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135(42):15913–15922

    Article  CAS  PubMed  Google Scholar 

  17. Zhou R et al (2015) Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. J Mater Chem A 3(23):12539–12549

    Article  CAS  Google Scholar 

  18. Shen X et al (2015) Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges. J Power Sour 277:215–221

    Article  CAS  Google Scholar 

  19. Zhou R et al (2013) Influence of cationic precursors on CdS quantum-dot-sensitized solar cell prepared by successive ionic layer adsorption and reaction. J Phys Chem C 117(51):26948–26956

    Article  CAS  Google Scholar 

  20. Carey GH et al (2015) Colloidal quantum dot solar cells. Chem Rev 115(23):12732–12763

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Marandi M, Torabi N, Farahani FA (2020) Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer. Sol Energy 207:32–39

    Article  ADS  CAS  Google Scholar 

  22. Davis NJ et al (2015) Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat Commun 6(1):8259

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Song X et al (2013) One-step preparation and assembly of aqueous colloidal CdS x Se1–x nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells. ACS Appl Mater Interfaces 5(11):5139–5148

    Article  CAS  PubMed  Google Scholar 

  24. Lee H et al (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9(12):4221–4227

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhang Q et al (2012) Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Phys Chem Chem Phys 14(18):6479–6486

    Article  PubMed  Google Scholar 

  26. Ma W et al (2009) Photovoltaic devices employing ternary pbs x se1−x nanocrystals. Nano Lett 9(4):1699–1703

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Veerathangam K, Pandian MS, Ramasamy P (2017) Photovoltaic performance of Ag-doped CdS quantum dots for solar cell application. Mater Res Bull 94:371–377

    Article  CAS  Google Scholar 

  28. Jeong M-S et al (2014) Study on characteristics of CdS quantum dot-sensitized solar cells prepared by successive ionic layer adsorption and reaction with different adsorption times. Electron Mater Lett 10:621–626

    Article  ADS  CAS  Google Scholar 

  29. Jun H, Careem M, Arof A (2013) Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew Sustain Energy Rev 22:148–167

    Article  CAS  Google Scholar 

  30. Xu F et al (2009) Enthalpies of formation of CdSxSe1x solid solutions. J Mater Res 24(4):1368–1374

    Article  ADS  CAS  Google Scholar 

  31. Hossain MA et al (2012) Band engineered ternary solid solution CdSxSe1x-sensitized mesoscopic TiO 2 solar cells. Phys Chem Chem Phys 14(19):7154–7161

    Article  CAS  PubMed  Google Scholar 

  32. da Silva JE et al (2023) Electrosynthesis and characterization of alloyed CdSxSe1x ternary quantum dots. J Alloy Compd 969:172315

    Article  Google Scholar 

  33. Zhou R et al (2016) Tailoring band structure of ternary CdSxSe1x quantum dots for highly efficient sensitized solar cells. Sol Energy Mater Sol Cells 155:20–29

    Article  CAS  Google Scholar 

  34. Yang J, Zhong X (2016) CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media. J Mater Chem A 4(42):16553–16561

    Article  CAS  Google Scholar 

  35. Ostadebrahim M, Dehghani H (2020) Improving the photovoltaic performance of CdSe0. 2S0. 8 alloyed quantum dot sensitized solar cells using CdMnSe outer quantum dot. Sol Energy 199:901–910

    Article  ADS  CAS  Google Scholar 

  36. Lan Z et al (2018) CdSexS1x/CdS-cosensitized 3D TiO 2 hierarchical nanostructures for efficient energy conversion. J Solid State Electrochem 22:347–353

    Article  CAS  Google Scholar 

  37. Shu T et al (2012) Efficient quantum dot-sensitized solar cell with tunable energy band CdSexS(1−x) quantum dots. J Mater Chem 22(21):10525–10529

    Article  CAS  Google Scholar 

  38. Maity P et al (2016) Intraband Electron cooling mediated unprecedented photocurrent conversion efficiency of CdSxSe1x Alloy QDs: direct correlation between electron cooling and efficiency. J Phys Chem C 120(38):21309–21316

    Article  CAS  Google Scholar 

  39. Elibol E (2021) Charge recombination suppressed CdSeS/CdSe/ZnS QDSSC design. Hacet J Biol Chem 49(2):175–187

    Article  Google Scholar 

  40. Deng J et al (2020) CdS-derived CdS1− xSex nanocrystals within TiO2 films for quantum dot-sensitized solar cells prepared through hydrothermal anion exchange reaction. Electrochim Acta 356:136845

    Article  CAS  Google Scholar 

  41. Kumar PN et al (2014) Au@ poly (acrylic acid) plasmons and C 60 improve the light harvesting capability of a TiO 2/CdS/CdSeS photoanode. J Mater Chem A 2(25):9771–9783

    Article  CAS  Google Scholar 

  42. Li Z et al (2014) CdSxSe1x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO 2 film. J Nanopart Res 16:1–16

    Article  ADS  Google Scholar 

  43. Xiaohui S et al (2013) One-step preparation and assembly of aqueous colloidal CdSxSe1–x nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells. ACS Appl Mater Interfaces 5(11):5139–5148

    Article  Google Scholar 

  44. Tyagi J, Gupta H, Purohit L (2021) Ternary alloyed CdS1−xSex quantum dots on TiO2/ZnS electrodes for quantum dots-sensitized solar cells. J Alloy Compd 880:160480

    Article  CAS  Google Scholar 

  45. Ostadebrahim M, Dehghani H (2021) The study of the treatment of cerium-zinc sulfide passivation layer on photovoltaic performance of CdSe0 2S0. 8. ternary quantum dot sensitized solar cells. J Power Sour 507:230266

    Article  CAS  Google Scholar 

  46. Ostadebrahim M, Dehghani H (2021) ZnS/CdSe0. 2S0. 8/ZnSSe heterostructure as a novel and efficient photosensitizer for highly efficient quantum dot sensitized solar cells. Appl Surf Sci 545:148958

    Article  CAS  Google Scholar 

  47. Sabet MNS, Marandi M, Ahmadloo F (2015) Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2 nanocrystals. Eur Phys J Appl Phys 69(2):20401

    Article  Google Scholar 

  48. Marandi M, Farahani FA, Davoudi M (2017) Fabrication of submicron/micron size cavities included TiO2 photoelectrodes and optimization of light scattering to improve the photovoltaic performance of CdS quantum dot sensitized solar cells. J Electroanal Chem 799:167–174

    Article  CAS  Google Scholar 

  49. Mustakim NSM et al (2018) Quantum dots processed by SILAR for solar cell applications. Sol Energy 163:256–270

    Article  ADS  Google Scholar 

  50. Calixto-Rodriguez M et al (2021) Design and development of software for the SILAR control process using a low-cost embedded system. Processes 9(6):967

    Article  CAS  Google Scholar 

  51. Hamid ZA et al (2020) Deposition, characterization, performance of cadmium sulfide quantum dots thin films using SILAR technique for quantum dot sensitized solar cell applications. Key Eng Mater 835:374

    Article  Google Scholar 

  52. Rosiles-Perez C et al (2018) Improved performance of CdS quantum dot sensitized solar cell by solvent modified SILAR approach. Sol Energy 174:240–247

    Article  ADS  CAS  Google Scholar 

  53. Ahmed R et al (2015) Enhanced electron lifetime of CdSe/CdS quantum dot (QD) sensitized solar cells using ZnSe core–shell structure with efficient regeneration of quantum dots. J Phys Chem C 119(5):2297–2307

    Article  CAS  Google Scholar 

  54. Tian J et al (2014) A highly efficient (> 6%) Cd 1–x Mn x Se quantum dot sensitized solar cell. J Mater Chem A 2(46):19653–19659

    Article  CAS  Google Scholar 

  55. Chung Y-C et al (2018) Synthesis and characterization of CdSxSe1x alloy quantum dots with composition-dependent band gaps and paramagnetic properties. RSC Adv 8(52):30002–30011

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peng H et al (2019) High-quality perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source thermal evaporation combined with solvent treatment. Materials 12(8):1237

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1918:98–100

    Google Scholar 

  58. Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci 480:218–231

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Hassanien AS, Akl AA (2016) Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct 89:153–169

    Article  ADS  CAS  Google Scholar 

  60. Martens H, Nielsen JP, Engelsen SB (2003) Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem 75(3):394–404

    Article  CAS  PubMed  Google Scholar 

  61. Hou J et al (2018) Facile one-step fabrication of CdS 0.12 Se 0.88 quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. J Mater Chem A 6(21):9866–9873

    Article  ADS  CAS  Google Scholar 

  62. Tian J et al (2013) ZnO/TiO 2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale 5(3):936–943

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Dominici L et al., (2011) Dye solar cells: basic and photon management strategies, in Solar Cells-Dye-Sensitized Devices. InTech.

  64. Kim J-Y et al (2015) Highly efficient copper–indium–selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers. ACS Nano 9(11):11286–11295

    Article  CAS  PubMed  Google Scholar 

  65. Yoon I-N et al (2014) Shape dependence of SiO2 nanomaterials in a quasi-solid electrolyte for application in dye-sensitized solar cells. J Phys Chem C 118(8):3918–3924

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SS was in charge of the original research, preparing, carrying out and analyzing experiments, as well as writing the initial draft of the manuscript. Along with writing and final editing of the manuscript, MM was responsible for the design of the experiment, its supervision, and a technical and scientific examination of the findings from the analysis.

Corresponding author

Correspondence to Maziar Marandi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 609 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, S., Marandi, M. Composition tuning of CdSeXS1−X nanocrystals for enhancing the photovoltaic performance of CdS/CdSeXS1−X quantum dot-sensitized solar cells. J Mater Sci 59, 3544–3560 (2024). https://doi.org/10.1007/s10853-024-09424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09424-8

Navigation