Skip to main content
Log in

Shear banding mechanisms in Cu/Ru nano-structured multilayers: effect of phase transformation

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The shear banding mechanisms of sputter-deposited nanoscale Cu/Ru multilayer with single-layer thickness of 0.8 nm and 1.5 nm, respectively, were investigated by nanoindentation. Shear bands can be observed in Cu/Ru multilayer only when the layer thickness is 1.5 nm. Deformed microstructure analysis showed that the plastic deformation behavior within the shear band of Cu1.5/Ru1.5 multilayer is primarily controlled by the dislocation dominated non-crystallographic rotation through the Cu/Ru interface without changing the crystallographic orientation. By synthetical analyzing of the indentation-induced deformed microstructures, a deformation mode transition from shear banding to opening crack is suggested as decreasing the layer thickness from 1.5 to 0.8 nm, mainly relating to the phase structure of Ru layer. Moreover, the excellent toughness of Cu/Ru multilayers also could be obtained by regulating the influences of phase structure on the shear band formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data will be made available on request.

Code availability

The code will be made available on request.

References

  1. Wang TC, Hsu SY, Lai YT, Tsai SY, Duh JG (2023) Microstructure and high-temperature tribological characteristics of self-lubricating TiAlSiN/VSiN multilayer nitride coatings. Mater Chem Phys 295:127149

    Article  CAS  Google Scholar 

  2. Chen FD, Tang XB, Yang YH, Huang H, Liu J, Li H, Chen D (2016) Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance. J Nucl Mater 468:164–170

    Article  ADS  CAS  Google Scholar 

  3. Zhou Q, Luo DW, Hua DP, Ye WT, Li S, Zou QG, Chen ZQ, Wang HF (2022) Design and characterization of metallic glass/graphene multilayer with excellent nanowear properties. Friction 10:1913–1926

    Article  CAS  Google Scholar 

  4. Ren Y, Huang ZB, Wang YC, Zhou Q, Yang T, Li QK, Jia Q, Wang HF (2023) Friction-induced rapid amorphization in a wear-resistant (CoCrNi)88Mo12 dual-phase medium-entropy alloy at cryogenic temperature. Compos B Eng 263:110833

    Article  CAS  Google Scholar 

  5. Shi YR, Ye WT, Hua DP, Zhou Q, Huang ZB, Liu YX, Li S, Guo T, Chen YN, Eder SJ, Wang HF (2023) Interfacial engineering for enhanced mechanical performance: high-entropy alloy/graphene nanocomposites. Mater Today Phys 38:101220

    Article  CAS  Google Scholar 

  6. Hua DP, Zhou Q, Shi YR, Li S, Hua K, Wang HF, Li SZ, Liu WM (2023) Revealing the deformation mechanisms of <110> symmetric tilt grain boundaries in CoCrNi medium-entropy alloy. Int J Plast 171:103832

    Article  CAS  Google Scholar 

  7. Xu MY, Han D, Zheng ZY, Ma RN, Du A, Fan YZ, Zhao X, Cao XM (2022) Effects of cooling rate on the microstructure and properties of hot-dipped Zn-Al-Mg coatings. Surf Coat Technol 444:128665

    Article  CAS  Google Scholar 

  8. Wang W, Hua DP, Luo DW, Zhou Q, Li S, Shi JQ, Wang HF (2022) Molecular dynamics simulation of deformation mechanism of CoCrNi medium entropy alloy during nanoscratching. Comput Mater Sci 203:111085

    Article  CAS  Google Scholar 

  9. Huang YY, Zhou C, Chen KY, Yang YX, Xiong JK, Yang JP, Guo Y, Mao GJ, Yang L, Nie FH, Li X, Zhou QH (2023) Nanoindentation size effects of mechanical and creep performance in Ni-based superalloy. Mater SciTech-lond 39:1543–1554

    Article  ADS  CAS  Google Scholar 

  10. Zhou Q, Luo DW, Ye WT, Li S, Huang ZB, Ma B, Wang HF (2022) Mechanical and tribological behaviors of metallic glass/graphene film with a laminated structure. Compos Part A Appl Sci Manuf 155:106851

    Article  CAS  Google Scholar 

  11. Ye WT, Xie MD, Huang ZB, Wang HM, Zhou Q, Wang L, Chen B, Wang HF, Liu WM (2023) Microstructure and tribological properties of in-situ carbide/CoCrFeNiMn high entropy alloy composites synthesized by flake powder metallurgy. Tribol Int 181:108295

    Article  CAS  Google Scholar 

  12. Huang S, Wang J, Zhou C (2015) Effect of plastic incompatibility on the strain hardening behavior of Al-TiN nanolayered composites. Mater Sci Eng A 636:430–433

    Article  CAS  Google Scholar 

  13. Sharifi H, Arumugam PU, Wick CD (2023) The effect of Pt and IrO2 interlayers on enhancing the adhesion of Ti/SnO2 interface: a first principles density functional theory study. Appl Surf Sci 639:158248

    Article  CAS  Google Scholar 

  14. Yu SJ, Parry G, Coupeau C, Li LW (2021) Pressure-induced transition from wavy circular to ring-shaped buckles. Int J Solids Struct 225:111053

    Article  CAS  Google Scholar 

  15. Zhou Q, Zhang S, Wei XZ, Wang F, Huang P, Xu KW (2018) Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness. J Alloys Compd 742:45–53

    Article  CAS  Google Scholar 

  16. Zhou C, Wang JJ, Meng J, Li W, Liu P, Zhang K, Ma FC, Ma X, Feng R, Liaw PK (2022) Effects of modulation layer thickness on fracture toughness of a TiN/AlN-Ni multilayer film. Mater Des 222:111097

    Article  CAS  Google Scholar 

  17. Zhou Q, Du Y, Ren Y, Kuang WW, Han WC, Wang HF, Huang P, Wang F, Wang J (2019) Investigation into nanoscratching mechanical performance of metallic glass multilayers with improved nano-tribological properties. J Alloys Compd 776:447–459

    Article  CAS  Google Scholar 

  18. Li X, Luo XM, Zhang GP (2018) Dislocation-dominated non-crystallographic rotation in shear bands of Cu/Au nanolayered composites. Mater Lett 226:67–70

    Article  CAS  Google Scholar 

  19. Chen Y, Li N, Hoagland RG, Liu XY, Baldwin JK, Beyerlein IJ, Cheng JY, Mara NA (2020) Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers. Acta Mater 199:593–601

    Article  ADS  CAS  Google Scholar 

  20. Sahu BP, Higgins WH, Derby BK, Pharr GM, Misra A (2022) Strain-rate dependent deformation mechanisms in single-layered Cu, Mo, and multilayer Cu/Mo thin films. Mater Sci Eng A 838:142776

    Article  CAS  Google Scholar 

  21. Chen C, Chen Y, Li KL, Yang SY, Wang J, Wang S, Mao YR, Luo LM, Wu YC (2023) The ductile-brittle transition behaviors of W/Ta multilayer composites. J Alloys Compd 946:169377

    Article  CAS  Google Scholar 

  22. Zhang H, Wei BQ, Ou XQ, Ni S, Zhou KC, Song M (2022) Dislocation induced FCC twinning at the HCP/FCC interfaces in a deformed Ti-5at.%Al alloy: experiments and simulations. J Phys Chem Solids 169:110835

    Article  CAS  Google Scholar 

  23. Zhou Q, Li Y, Wang F, Huang P, Lu TJ, Xu KW (2016) Length-scale-dependent deformation mechanism of Cu/X (X=Ru, W) multilayer thin films. Mater Sci Eng A 664:206–214

    Article  CAS  Google Scholar 

  24. Zhou JN, Guo YF, Ren JY, Tang XZ (2023) The mechanism of hcp-bcc phase transformation in Mg single crystal under high pressure. Scr Mater 236:115670

    Article  CAS  Google Scholar 

  25. Pathak S, Velisavljevic N, Baldwin JK, Jain M, Zheng SJ, Mara NA, Beyerlein IJ (2017) Strong, ductile, and thermally stable bcc-Mg nanolaminates. Sci Rep 7:8264

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Im B, Kim S, Kim SH (2023) Nucleation-controlled growth of Cu thin films electrodeposited directly on ALD Ru diffusion barrier in additive-free electrolyte for Cu interconnect. Microelectron Eng 275:111991

    Article  CAS  Google Scholar 

  27. Maurya SK, Nie JF, Alankar A (2021) Atomistic analyses of HCP-FCC transformation and reorientation of Ti in Al-Ti multilayers. Comput Mater Sci 192:110329

    Article  CAS  Google Scholar 

  28. Zhang YF, Li Q, Gong M, Xue S, Ding J, Li J, Cho J, Niu T, Su RZ, Richter NA, Wang H, Wang J, Zhang X (2020) Deformation behavior and phase transformation of nanotwinned Al/Ti multilayers. Appl Surf Sci 527:146776

    Article  CAS  Google Scholar 

  29. Tran AS (2020) Phase transformation and interface fracture of Cu/Ta multilayers: a molecular dynamics study. Eng Fract Mech 239:107292

    Article  Google Scholar 

  30. Banerjee R, Zhang XD, Dregia SA, Fraser HL (1999) Phase stability in Al/Ti multilayers. Acta Mater 47:1153–1161

    Article  ADS  CAS  Google Scholar 

  31. Zhang YF, Su R, Niu TJ, Richter NA, Xue S, Li Q, Ding J, Yang B, Wang H, Zhang X (2020) Thermal stability and deformability of annealed nanotwinned Al/Ti multilayers. Scr Mater 186:219–224

    Article  CAS  Google Scholar 

  32. Thompson GB, Banerjee R, Dregia SA, Fraser HL (2003) Phase stability of bcc Zr in Nb/Zr thin film multilayers. Acta Mater 51:5285–5294

    Article  ADS  CAS  Google Scholar 

  33. Wang F, Huang P, Xu M, Lu TJ, Xu KW (2011) Shear banding deformation in Cu/Ta nano multilayers. Mater Sci Eng A 528:7290–7294

    Article  CAS  Google Scholar 

  34. Lu L, Huang C, Pi WL, Xiang HG, Gao FS, Fu T, Peng XH (2018) Molecular dynamics simulation of effects of interface imperfections and modulation periods on Cu/Ta multilayers. Comput Mater Sci 143:63–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52175188), Key Research and Development Program of Shaanxi Province (2023-YBGY-434) and the Open Fund of Liaoning Provincial Key Laboratory of Aero-engine Materials Tribology (LKLAMTF202301). We would also like to thank Dr. Yixue Li and Dr. Qiufeng Wang from the Analytical and Testing Center of Northwestern Polytechnical University for their significant help during the nanoindentation test.

Author information

Authors and Affiliations

Authors

Contributions

AX contributed to the conceptualization, methodology and writing—original draft. ZY was involved in the investigation, formal analysis and writing—original draft. LQ assisted in the formal analysis, funding acquisition and writing—original draft. WH contributed to the conceptualization and methodology and supervision.

Corresponding author

Correspondence to Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: :Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Zhang, Y., Li, Q. et al. Shear banding mechanisms in Cu/Ru nano-structured multilayers: effect of phase transformation. J Mater Sci 59, 3652–3661 (2024). https://doi.org/10.1007/s10853-024-09396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09396-9

Navigation