Skip to main content
Log in

Investigations on TiO2–NiO@In2O3 nanocomposite thin films (NCTFs) for gas sensing: synthesis, physical characterization, and detection of NO2 and H2S gas sensors

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The spray pyrolysis technique is a versatile and cost-effective method for producing TiO2–NiO@In2O3 NCTFs on glass substrates with varying molar ratios. NCTFs have been studied for gas sensing applications due to their excellent sensing properties. The films' structural, morphological, and gas sensing characteristics were analyzed. The XRD analysis indicates that the NCTFs are polycrystalline, meaning that they are made up of many small crystals. The crystals are oriented in a random fashion, which is why the XRD pattern is broad. The anatase phase of TiO2 is a tetragonal crystal structure. The NiO and In2O3 phases are both cubic crystal structures. The presence of nanostructure cubic phases indicates that the nanoparticles in the films are small enough to significantly affect the crystal structure of the films. Scanning electron microscopy images showed surface homogeneity, with small granular grains of nanostructures without any cracks. The gas sensor created using the prepared samples showed high sensitivity to NO2 and H2S gases, and its sensitivity was measured at different operation temperatures, along with response and recovery times. The optical properties of In2O3 are affected by the addition of TiO2 and NiO impurities. The transmittance of In2O3 increases as the NiO ratio increases and the TiO2 ratio decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All authors contributed that there is no associated data, or the data will be not deposited. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

All authors contributed that there is no associated data, or the data will be not deposited. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Azpiroz R, Carretero E, Cueva A, González A, Iglesias M, Pérez-Torrente JJ (2022) In-flow photocatalytic oxidation of NO on glasses coated with nanocolumnar porous TiO2 thin films prepared by reactive sputtering. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.154968

    Article  Google Scholar 

  2. Kaur M et al (2008) Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sens Actuators, B Chem 133:456–461. https://doi.org/10.1016/j.snb.2008.03.003

    Article  CAS  Google Scholar 

  3. Chou J (1999) Gas sensor calibration definition, hazard. Gas Monit A Pract Guid to Sel Oper Appl (1999) 161–173.

  4. Rajeh S et al (2022) Physical investigations on Ni doping ZnO thin films along with ethanol response. J Mater Sci Mater Electron 33:17513–17521. https://doi.org/10.1007/s10854-022-08610-1

    Article  CAS  Google Scholar 

  5. Feng W, Yang X, He Z, Liu M (2021) Hydrogen sulfide gas sensor based on TiO2–ZnO composite sensing membrane-coated no-core fiber. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/abd503

    Article  Google Scholar 

  6. Katti VR et al (2003) Mechanism of drifts in H2S sensing properties of SnO2: CuO composite thin film sensors prepared by thermal evaporation. Sens Actuators, B Chem 96(1–2):245–252. https://doi.org/10.1016/S0925-4005(03)00532-X

    Article  CAS  Google Scholar 

  7. Ionescu R, Hoel A, Granqvist CG, Llobet E, Heszler P (2005) Low-level detection of ethanol and H2S with temperature- modulated WO3 nanoparticle gas sensors. Sens Actuators, B Chem 104:132–139. https://doi.org/10.1016/j.snb.2004.05.015

    Article  CAS  Google Scholar 

  8. Chang J, Deng Z, Fang X, Hu C, Shi L, Dai T, Li M, Wang S, Meng G (2021) Heterostructural (Sr0.6Bi0.305)2Bi2O7/ZnO for novel high-performance H2S sensor operating at low temperature. J Hazard Mater 414:125500. https://doi.org/10.1016/j.jhazmat.2021.125500

    Article  CAS  PubMed  Google Scholar 

  9. Chizhov A, Rumyantseva M, Gaskov A (2021) Light activation of nanocrystalline metal oxides for gas sensing: principles, achievements, challenges. Nanomaterials 11:892. https://doi.org/10.3390/nano11040892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang S, Zhao LJ, Huang BY, Li XG (2020) UV-activated formaldehyde sensing properties of hollow TiO2@SnO2 heterojunctions at room temperature. Sens Actuators B Chem 319:128264. https://doi.org/10.1016/j.snb.2020.128264

    Article  CAS  Google Scholar 

  11. Zhao SK, Shen YB, Zhou PF, Hao FL, Xu XY, Gao SL, Wei DZ, Ao YX, Shen YS (2020) Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sens Actuators B Chem 308:127729. https://doi.org/10.1016/j.snb.2020.127729

    Article  CAS  Google Scholar 

  12. Zhang S, Sun SP, Huang BY, Wang N, Li XG (2023) UV-enhanced formaldehyde sensor using hollow In2O3@TiO2 double-layer nanospheres at room temperature. ACS Appl Mater Inter 15:4329–4342. https://doi.org/10.1021/acsami.2c19722

    Article  CAS  Google Scholar 

  13. Ibupoto Z, Abbasi MA, Liu X, Alsalhi MS, Willander M (2014) the synthesis of NiO/TiO2 heterostructures and their valence band offset determination. J Nanomater 2014:928658. https://doi.org/10.1155/2014/

    Article  Google Scholar 

  14. Nikolic MV, Milovanovic V, Vasiljevic ZZ, Stamenkovic Z (2020) Semiconductor gas sensors: materials, technology, design, and application. Sensors 20:6694. https://doi.org/10.3390/s20226694

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo Y, An B, Bai J, Wang Y, Cheng X, Wang Q et al (2021) Ultrahigh response hydrogen sensor based on PdO/NiO co-doped In2O3 nanotubes. J Colloid Interf Sci 599:533–542. https://doi.org/10.1016/j.jcis.2021.04.125

    Article  ADS  CAS  Google Scholar 

  16. Yang S, Yin H, Wang Z, Lei G, Xu H, Lan Z, Gu H (2023) Gas sensing performance of In2O3 nanostructures: a mini review. Front Chem 11:1174207. https://doi.org/10.3389/fchem.2023.1174207

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang S, Huang B, Jiang Z, Qian J, Cao J, Feng Q, Zhang J, Li X (2023) UV-activated Au modified tio2/In2o3 hollow nanospheres for formaldehyde detection at room temperature. Mater 16:4010. https://doi.org/10.3390/ma16114010

    Article  CAS  Google Scholar 

  18. Saruhan B, Lontio Fomekong R, Nahirniak S (2021) Influences of semiconductor metal oxide properties on gas sensing characteristics. Front Sens 2:1–24. https://doi.org/10.3389/fsens.2021.657931

    Article  Google Scholar 

  19. Kampitakis V, Gagaoudakis E, Zappa D, Comini E, Aperathitis E, Kostopoulos A, Kiriakidis G, Binas V (2020) highly sensitive and selective NO2 chemical sensors based on Al doped NiO thin films. Mater Sci Semicond Process 115:105149. https://doi.org/10.1016/j.mssp.2020.105149

    Article  CAS  Google Scholar 

  20. Chaudhari GN, Bambole DR, Bodade AB, Padole PR (2006) Characterization of nanosized TiO2 based H2S gas sensor. J Mater Sci 41:4860–4864. https://doi.org/10.1007/s10853-006-0042-7

    Article  ADS  CAS  Google Scholar 

  21. Eranna G, Joshi B, Runthala D, Gupta R (2004) Oxide materials for development of integrated gas sensors, a comprehensive review. Crit Rev Solid State Mater Sci 29:111–188. https://doi.org/10.1080/10408430490888977

    Article  ADS  CAS  Google Scholar 

  22. Petrov VV, Ivanishcheva AP, Volkova MG, Storozhenko VY, Gulyaeva IA, Pankov IV, Volochaev VA, Khubezhov SA, Bayan EM (2022) High gas sensitivity to nitrogen dioxide of nanocomposite zno-sno2 films activated by a surface electric field. Nanomaterials 12:2025. https://doi.org/10.3390/nano12122025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang R, Deng Z, Shi L, Kumar M, Chang J, Wang S, Fang X, Tong W, Meng G (2022) Pt-Anchored CuCrO2 for low-temperature-operating high-performance H2S chemiresistors. ACS Appl Mater Interfaces 14:24536–24545. https://doi.org/10.1021/acsami.2c00619

    Article  CAS  PubMed  Google Scholar 

  24. Patil GE, Kajale DD, Chavan DN, Pawar NK, Ahire PT, Shinde SD, Gaikwad VB, Jain GH (2011) Synthesis, characterization, and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Bull Mater Sci 34:1–9. https://doi.org/10.1007/s12034-011-0045-0

    Article  CAS  Google Scholar 

  25. R. W. G. (1963). Crystal Structures 1, 2nd edn. Interscience Publishers, New York, p 239–444.

  26. Leineweber A, Jacobs H, Hull S (2001) Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction. Inorg Chem 40:5818–5822

    Article  CAS  PubMed  Google Scholar 

  27. Haunsbhavi K et al (2021) Pseudo n-type behaviour of nickel oxide thin film at room temperature towards ammonia sensing. Ceram Int 47:13693–13703. https://doi.org/10.1016/j.ceramint.2021.01.230

    Article  CAS  Google Scholar 

  28. Zheng ZQ, Zhu LF, Wang B (2015) In2O3 Nanotower hydrogen gas sensors based on both schottky junction and thermoelectronic emission. Nanoscale Res Lett 10:1–14. https://doi.org/10.1186/s11671-015-1002-4

    Article  ADS  CAS  Google Scholar 

  29. Malekkiani M, Magham AHJ, Ravari F, Dadmehr M (2022) Facile fabrication of ternary MWCNTs/ZnO/Chitosan nanocomposite for enhanced photocatalytic degradation of methylene blue and antibacterial activity. Sci Rep 8:5927. https://doi.org/10.1038/s41598-022-09571-5

    Article  ADS  CAS  Google Scholar 

  30. Nasiri S, Rabiei M, Palevicius A, Janusas G, Vilkauskas A, Nutalapati V, Monshi A (2023) Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5. Nano Trends 3:100015. https://doi.org/10.1016/j.nwnano.2023.100015

    Article  Google Scholar 

  31. Lee S, Choi S, Park SH, Cho SH, Sohn W, Eom TH, Kim Y, Jang HW (2023) Synthesis-in-place hydrothermal growth of hematite nanorods on patterned substrate for highly sensitive and rapid acetone detection. Sens Actuators, B Chem 395:134519. https://doi.org/10.1016/j.snb.2023.134519

    Article  CAS  Google Scholar 

  32. Nurpeissova A, Choi MH, Kim JS, Myung ST, Kim SS, Sun YK (2015) Effect of titanium addition as nickel oxide formation inhibitor in nickel-rich cathode material for lithium-ion batteries. J Power Sources 299:425–433. https://doi.org/10.1016/j.jpowsour.2015.09.016

    Article  CAS  Google Scholar 

  33. Shankar P, Bosco J, Rayappan B (2015) Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases- a review. Sci Lett J 4:126

    Google Scholar 

  34. Tian J, Jiang H, Zhao X, Shi G, Dai Y, Deng X, Xie H, Zhang W (2022) Hydrogen sensor with ppb-level detection limit prepared by Pd-modified and Bi-doped oxidized Ni foam. Sens Actuators, B Chem 366:131981. https://doi.org/10.1016/j.snb.2022.131981

    Article  CAS  Google Scholar 

  35. Salunkhe RR, Shinde Sensors VR, Lokhande D (2008) Liquefied petroleum gas (LPG) sensing properties of nanocrystalline CdO thin films prepared by chemical route: effect of molarities of precursor solution. Sens Actuators, B Chem 133:296–301. https://doi.org/10.1016/j.snb.2008.02.024

    Article  CAS  Google Scholar 

  36. Ansari ZA, Ko TG, Oh J-H (2005) CO-sensing properties of In2O3-doped SnO2 thick-film sensors: effect of doping concentration and grain size. IEEE Sens J. https://doi.org/10.1109/JSEN.2005.854485

    Article  Google Scholar 

  37. Khudher HH, Abd JA (2021) Variation resistance of different operation temperature of NO2 and NH3 gases for the Ag-doped SiC gas sensor. J Phys Conf Ser 1973:012140. https://doi.org/10.1088/1742-6596/1973/1/012140

    Article  CAS  Google Scholar 

  38. Tahir M, Tahir B, Amin NAS, Muhammad A (2016) Photocatalytic CO2 methanation over NiO/In2O3 promoted TiO2 nanocatalysts using H2O and/or H2 reductants. Energy Convers Manage 119:368–378. https://doi.org/10.1016/j.enconman.2016.04.057

    Article  CAS  Google Scholar 

  39. Essalhi Z, Hartiti B, Lfakir A, Siadat M, Thevenin P (2016) Optical properties of TiO2 Thin films prepared by Sol Gel method. J Mater Environ Sci 7(4):1328–1333

    CAS  Google Scholar 

  40. Tahir M, Amin NAS (2015) Performance analysis of nanostructured NiO-In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chem Eng J 285:635–649. https://doi.org/10.1016/j.cej.2015.10.033

    Article  CAS  Google Scholar 

  41. Uddin MdT, Nicolas Y, Olivier C, Jaegermann W, Rockstroh N, Junge H, Toupance T (2017) Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys Chem Chem Phys 19(29):19279–19288. https://doi.org/10.1039/c7cp01300k

    Article  CAS  PubMed  Google Scholar 

  42. Yao N, Huang J, Fu K, Deng X, Ding M, Zhang S, Xu X, Li L (2016) reduced interfacial recombination in dye-sensitized solar cells assisted with NiO: Eu3+, Tb3+ coated TiO2 film. Sci Rep 6:31123. https://doi.org/10.1038/srep31123

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their awareness to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through small group Research Project under grant number RGP1/142/44.

Author information

Authors and Affiliations

Authors

Contributions

MASA, FTI, SG, WJ, and AB lead conceptualization, investigation, methodology, project administration, validation, and visualization, as well as writing–the original draft and – reviewing and editing the work. MASA and FTI contributed to data curation, formal analysis, and supervision of the presented study. AB, WJ, FTI, and SG contributed to data curation, formal analysis, investigation, methodology, project admi lead funding acquisition, and supervision, and provided the resources for carrying out this study. Further, AB contributed to the conceptualization, investigation, methodology, and project administration of this work. All author's construction, validation, visualization, and writing–the original draft of this manuscript. SG, AB, and WJ contributed to data curation, formal analysis, validation, writing–the original draft, and visualization of this work. SG contributed to data curation, validation, and writing–the original draft of the presented work. AB contributed to the writing–review, and editing of the presented work.

Corresponding author

Correspondence to Abdelfatteh Bouzidi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All the authors declare that the manuscript does not have studies on human subjects, human data or tissue, or animals.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alborisha, M.A.S., Ibrahim, F.T., Jilani, W. et al. Investigations on TiO2–NiO@In2O3 nanocomposite thin films (NCTFs) for gas sensing: synthesis, physical characterization, and detection of NO2 and H2S gas sensors. J Mater Sci 59, 3451–3466 (2024). https://doi.org/10.1007/s10853-024-09376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09376-z

Navigation