Skip to main content
Log in

Acid orange 7 doped poly(3,4-ethylenedioxythiophene)/molybdenum disulfide/reduced graphene oxide composite as an electrode material for flexible all-solid-state supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Acid orange 7 doped poly(3,4-ethylenedioxythiophene)/molybdenum disulfide/reduced graphene oxide (MoS2-RGO@AO7-PEDOT) composite is prepared via a facile two-step approach, where the first step is the molybdenum disulfide (MoS2) nanosheets dispersing on reduced graphene oxide (RGO) evenly using a hydrothermal method, and the second step involves the stable coating of acid orange 7 (AO7) doped poly(3,4-ethylenedioxythiophene) (PEDOT) on the MoS2-RGO surface through chemical oxidation method with AO7 acting as a guide and connector. At a mass ratio of 4:1 between 3,4-ethylenedioxythiophene (EDOT) and MoS2-RGO, MoS2-RGO is coated by AO7 doped PEDOT, and the composite shows a discontinuous lamellar structure without agglomeration of PEDOT, which provides a significant interface between the composite and the electrolyte in favor of increasing the contact area. The large contact area is beneficial for active substances to participate in the redox reaction for charge storage and improving the ion transport efficiency of the electrolyte, which would lead to enhanced electrochemical performance. The composite's specific capacitance in 1 mol L−1 sulfuric acid (H2SO4) is 233 F g−1, which surpasses that of PEDOT by 101%, and the composite retains an impressive 70.6% of its initial specific capacitance after 10,000 cycles. In addition, a flexible all-solid-state supercapacitor is created to investigate its practical application, where H2SO4/polyvinyl alcohol is utilized as the ionic electrolyte and spacer. The supercapacitor demonstrates a maximum energy density of 7.2 Wh kg−1 at a power density of 600 W kg−1, and it maintains 3.52 Wh kg−1 even under high-power density of 4800 W kg−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data will be provided upon reasonable request by contacting with the corresponding author.

References

  1. Teng W, Zhou Q, Wang X, Gao J, Hu P, Du Y, Li H, Wang J (2022) Enhancing ions/electrons dual transport in rGO/PEDOT:PSS fiber for high-performance supercapacitor. Carbon 189:284–292. https://doi.org/10.1016/j.carbon.2021.12.088

    Article  CAS  Google Scholar 

  2. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 403:126352. https://doi.org/10.1016/j.cej.2020.126352

    Article  CAS  Google Scholar 

  3. Zhang Y, Huang L, Lei X, Huang H, Guo W, Wang S (2023) Hierarchical ternary Zn–Ni–Co sulfide/oxide heterostructure for high specific energy hybrid supercapacitor. J Alloys Compd 962:171201. https://doi.org/10.1016/j.jallcom.2023.171201

    Article  CAS  Google Scholar 

  4. Nayak D, Choudhary RB (2023) Enhanced photophysical and electrochemical properties of 2D layered rGO and MoS2 integrated polypyrrole (rGO-PPy-MoS2) composite. J Mater Sci 58(22):9160–9180. https://doi.org/10.1007/s10853-023-08572-7

    Article  ADS  CAS  Google Scholar 

  5. Mindil A, Hassan H, Iqbal MW, Afzal AM, Amri N, Hadia NMA (2023) Enhancing energy storage capability of advanced redox-based supercapacitors through PANI incorporation into NiMnS matrix. Mater Chem Phys 306:128077. https://doi.org/10.1016/j.matchemphys.2023.128077

    Article  CAS  Google Scholar 

  6. Jimoh MF, El-Kady MF, Carson GS, Anderson MB, Duong Q, Kaner RB (2023) Template-free route to PEDOT nanofibers for 3D electrodes with ultrahigh capacitance and excellent cycling stability. Energy Storage Mater 61:102850. https://doi.org/10.1016/j.ensm.2023.102850

    Article  Google Scholar 

  7. Wustoni S, Ohayon D, Hermawan A, Nuruddin A, Inal S, Indartono YS, Yuliarto B (2023) Material design and characterization of conducting polymer-based supercapacitors. Polym Rev. https://doi.org/10.1080/15583724.2023.2220131

    Article  Google Scholar 

  8. Qu Y, Liao S, Wu L, Wang J, Duan L, He X, Lu F (2023) Compatible and high-efficiency quasi-solid-state integrated photocapacitor based on the synergism of PEDOT/RGO electrode and gel electrolyte to improve the carrier migration. Inorg Chem Front 10(17):4993–5003. https://doi.org/10.1039/d3qi00332a

    Article  CAS  Google Scholar 

  9. Cai Y, Xu L, Kang H, Zhou W, Xu J, Duan X, Lu X, Xu Q (2021) Electrochemical self-assembled core/shell PEDOT@MoS2 composite with ultra-high areal capacitance for supercapacitor. Electrochim Acta 370:137791. https://doi.org/10.1016/j.electacta.2021.137791

    Article  CAS  Google Scholar 

  10. Li D, Zhu D, Zhou W, Zhou Q, Wang T, Ye G, Lv L, Xu J (2017) Design and electrosynthesis of monolayered MoS2 and BF4-doped poly(3,4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance. J Electroanal Chem 801:345–353. https://doi.org/10.1016/j.jelechem.2017.08.012

    Article  CAS  Google Scholar 

  11. Bai M, Wang X, Li B (2018) Capacitive behavior and material characteristics of congo red doped poly (3,4-ethylene dioxythiophene). Electrochim Acta 283:590–596. https://doi.org/10.1016/j.electacta.2018.07.004

    Article  CAS  Google Scholar 

  12. Farshadnia MA, Ensafi AA, Mousaabadi KZ, Rezaei B (2022) Design and synthesis of three-dimensional CoNi2S4@MoS2@rGO nanocomposites and its application in electrochemical supercapacitors. J Alloys Compd 906:164278. https://doi.org/10.1016/j.jallcom.2022.164278

    Article  CAS  Google Scholar 

  13. Francis MK, Kumar GG, Bhargav PB, Balaji C, Ahmed N (2023) Binder free aluminium incorporated MoS2@CC electrode for supercapacitor applications. J Energy Storage 71:108054. https://doi.org/10.1016/j.est.2023.108054

    Article  Google Scholar 

  14. Sarmah D, Kumar A (2021) Symmetric Supercapacitors with layer-by-layer Molybdenum disulfide-reduced graphene oxide structures and poly(3,4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. J Energy Storage 35:102289. https://doi.org/10.1016/j.est.2021.102289

    Article  MathSciNet  Google Scholar 

  15. Askari MB, Salarizadeh P, Seifi M, Rozati SM, Beheshti-Marnani A (2020) Binary mixed molybdenum cobalt sulfide nanosheets decorated on rGO as a high-performance supercapacitor electrode. Nanotechnology 31(27):275406. https://doi.org/10.1088/1361-6528/ab80fb

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zhou H, Liu Y, Ren M, Zhai H (2022) Mechanically exfoliated graphite paper with layered microstructures for enhancing flexible electrochemical energy storage. Inorg Chem Front 9(9):1920–1930. https://doi.org/10.1039/d1qi01601f

    Article  CAS  Google Scholar 

  17. Zhou H, Ren M, Zhai H (2021) Enhanced supercapacitive behaviors of poly(3,4-ethylenedioxythiophene)/graphene oxide hybrids prepared under optimized electropolymerization conditions. Electrochim Acta 372:137861. https://doi.org/10.1016/j.electacta.2021.137861

    Article  CAS  Google Scholar 

  18. Dos Santos KM, Leonardo Nogueira G, Alves N (2021) High-performance symmetric supercapacitor based on molybdenum disulfide/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composite electrodes deposited by spray-coating. Int J Energ Res 45(6):9021–9038. https://doi.org/10.1002/er.6434

    Article  CAS  Google Scholar 

  19. Chao J, Yang L, Liu J, Hu R, Zhu M (2018) Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim Acta 270:387–394. https://doi.org/10.1016/j.electacta.2018.03.072

    Article  CAS  Google Scholar 

  20. Teimuri-Mofrad R, Payami E, Ahadzadeh I (2019) Synthesis, characterization and electrochemical evaluation of a novel high performance GO-Fc/PANI nanocomposite for supercapacitor applications. Electrochim Acta 321:134706. https://doi.org/10.1016/j.electacta.2019.134706

    Article  CAS  Google Scholar 

  21. Zhou H, Zhai H-J, Han G (2016) Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes. J Power Sources 323:125–133. https://doi.org/10.1016/j.jpowsour.2016.05.049

    Article  CAS  Google Scholar 

  22. Zhu T, Huang W, Zhang L, Gao J, Zhang W (2017) Adsorption of Cr(VI) on cerium immobilized cross-linked chitosan composite in single system and coexisted with Orange II in binary system. Int J Biol Macromol 103:605–612. https://doi.org/10.1016/j.ijbiomac.2017.05.051

    Article  CAS  PubMed  Google Scholar 

  23. Singu BS, Yoon KR (2018) Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim Acta 268:304–315. https://doi.org/10.1016/j.electacta.2018.02.076

    Article  CAS  Google Scholar 

  24. Singh MK, Pati J, Seth D, Prasad J, Agarwal M, Haider MA, Chang J-K, Dhaka RS (2023) Diffusion mechanism and electrochemical investigation of 1T phase Al-MoS2@rGO nano-composite as a high-performance anode for sodium-ion batteries. Chem Eng J 454:140140. https://doi.org/10.1016/j.cej.2022.140140

    Article  CAS  Google Scholar 

  25. Asen P, Shahrokhian S, Zad AI (2017) One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor. Int J Hydrogen Energ 42(33):21073–21085. https://doi.org/10.1016/j.ijhydene.2017.07.008

    Article  CAS  Google Scholar 

  26. Choudhary RB, Mandal G (2020) MoS2 decorated with graphene and polyaniline nanocomposite as an electron transport layer for OLED applications. J Mater Sci 31(2):1302–1316. https://doi.org/10.1007/s10854-019-02643-9

    Article  CAS  Google Scholar 

  27. Zou L, Qu R, Gao H, Guan X, Qi X, Liu C, Zhang Z, Lei X (2019) MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results Phys 14:102458. https://doi.org/10.1016/j.rinp.2019.102458

    Article  Google Scholar 

  28. Du Y, Cao D, Li B, Lu H, Shen Y (2021) Stable conge red doped poly (3,4-ethylene dioxythiophene)/graphene oxide composite as electrode material for high-performance asymmetric supercapacitors. Electrochim Acta 395:139201. https://doi.org/10.1016/j.electacta.2021.139201

    Article  CAS  Google Scholar 

  29. Mitra R, Saha A (2017) Reduced graphene oxide based “Turn-On” fluorescence sensor for highly reproducible and sensitive detection of small organic pollutants. ACS Sustain Chem Eng 5(1):604–615. https://doi.org/10.1021/acssuschemeng.6b01971

    Article  CAS  Google Scholar 

  30. Lim PT, Azman NHN, Kulandaivalu S, Sulaiman Y (2022) Three-dimensional network of poly(3,4-ethylenedioxythiophene)/nanocrystalline cellulose/cobalt oxide for supercapacitor. Polymer 250:124888. https://doi.org/10.1016/j.polymer.2022.124888

    Article  CAS  Google Scholar 

  31. Prakash K, Harish S, Kamalakannan S, Logu T, Shimomura M, Archana J, Navaneethan M (2023) Perspective on ultrathin layered Ni-doped MoS2 hybrid nanostructures for the enhancement of electrochemical properties in supercapacitors. J Energy Chem 80:335–349. https://doi.org/10.1016/j.jechem.2023.01.002

    Article  CAS  Google Scholar 

  32. Raman V, Rhee D, Selvaraj AR, Kim J, Prabakar K, Kang J, Kim H-K (2021) High-performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS2 nanosheets. Sci Technol Adv Mat 22(1):875–884. https://doi.org/10.1080/14686996.2021.1978274

    Article  CAS  Google Scholar 

  33. Zheng S, Zheng L, Zhu Z, Chen J, Kang J, Huang Z, Yang D (2018) MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett 10(4):70–80. https://doi.org/10.1007/s40820-018-0215-3

    Article  ADS  CAS  Google Scholar 

  34. Zhu T, Shen W, Wang X, Song Y-F, Wang W (2019) Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem Eng J 378:122159. https://doi.org/10.1016/j.cej.2019.122159

    Article  CAS  Google Scholar 

  35. Wang C, Wang S, Lv J, Ma Y, Zhou G, Chen M, Wang Y, Zhao M, Chen X (2019) Effect of Ni doping on electrocatalytic hydrogen evolution activity of MoS2. Int J Electrochem Sci 14(12):11607–11615. https://doi.org/10.20964/2019.12.66

    Article  CAS  Google Scholar 

  36. Hossain MA, Merzougui BA, Alharbi FH, Tabet N (2018) Electrochemical deposition of bulk MoS2 thin films for photovoltaic applications. Sol Energy Mater Sol Cells 186:165–174. https://doi.org/10.1016/j.solmat.2018.06.026

    Article  CAS  Google Scholar 

  37. Singh B, Kaur R, Kaur R, Singh K, Rana S (2022) A highly stable solid-state supercapacitor device based on robust layer-by-layer electrodeposited poly-(3,4-ethylenedioxythiophene)-reduced graphene oxide–molybdenum disulfide nanocomposite electrode. J Energy Storage 56:105926. https://doi.org/10.1016/j.est.2022.105926

    Article  Google Scholar 

  38. Liang A, Zhang Y, Jiang F, Zhou W, Xu J, Hou J, Wu Y, Ding Y, Duan X (2019) Electrochemical self-assembly of a 3D interpenetrating porous network PEDOT-PEG-WS2 nanocomposite for high-efficient energy storage. J Phys Chem C 123(41):25428–25436. https://doi.org/10.1021/acs.jpcc.9b05227

    Article  CAS  Google Scholar 

  39. Liang J, Wang Z, Huang L, Zou P, Liu X, Ni Q, Wang X, Wang W, Tao R (2023) Facile and tunable synthesis of nitrogen- doped graphene with different microstructures for high-performance supercapacitors. ACS Mater Lett 5(4):944–954. https://doi.org/10.1021/acsmaterialslett.2c01092

    Article  CAS  Google Scholar 

  40. Khan MN, Parmar DK, Das D (2021) Recent applications of azo dyes: a paradigm shift from medicinal chemistry to biomedical sciences. Mini-Rev Med Chem 21(9):1071–1084. https://doi.org/10.2174/1389557520999201123210025

    Article  CAS  PubMed  Google Scholar 

  41. Vivas L, Singh DP (2022) A highly efficient graphene gold based green supercapacitor coin cell device for energy storage. Front Energy Res 9:794604. https://doi.org/10.3389/fenrg.2021.794604

    Article  Google Scholar 

  42. Sajjad M, Khan AJ, Eldin SM, Alothman AA, Ouladsmane M, Bocchetta P, Ul Arifeen W, Javed MS, Mao Z (2023) A new CuSe-TiO2-GO ternary nanocomposite: realizing a high capacitance and voltage for an advanced hybrid supercapacitor. Nanomaterials 13(1):123. https://doi.org/10.3390/nano13010123

    Article  CAS  Google Scholar 

  43. Du M, Zhang K (2023) Nanoporous conducting polymer nanowire network-encapsulated MnO2-based flexible supercapacitor with enhanced rate capability and cycling stability. ACS Appl Mater Interfaces 15(18):22563–22573. https://doi.org/10.1021/acsami.3c03028

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Wang J, Liu J, Wu J, Chen H, Bi H (2017) Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: importance and unique role of carbon dots. Carbon 115:134–146. https://doi.org/10.1016/j.carbon.2017.01.005

    Article  CAS  Google Scholar 

  45. Mei B, Lau J, Lin T, Tolbert SH, Dunn BS, Pilon L (2018) Physical Interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage. J Phys Chem C 122(43):24499–24511. https://doi.org/10.1021/acs.jpcc.8b05241

    Article  CAS  Google Scholar 

  46. Mariappan VK, Krishnamoorthy K, Pazhamalai P, Sahoo S, Nardekar SS, Kim S-J (2019) Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors. Nano Energy 57:307–316. https://doi.org/10.1016/j.nanoen.2018.12.031

    Article  CAS  Google Scholar 

  47. Afzal AM, Awais M, Yasmeen A, Iqbal MW, Mumtaz S, Ouladsmane M, Usman M (2023) Exploring the redox characteristics of porous ZnCoS@rGO grown on nickel foam as a high-performance electrode for energy storage applications. RSC Adv 13(31):21236–21248. https://doi.org/10.1039/d3ra02792a

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu W, Li X, Zhu M, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186. https://doi.org/10.1016/j.jpowsour.2015.02.047

    Article  CAS  Google Scholar 

  49. Zhao X, Dong M, Zhang J, Li Y, Zhang Q (2016) Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors. Nanotechnology 27(38):385705. https://doi.org/10.1088/0957-4484/27/38/385705

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Azman NHN, Lim HN, Mamat MS, Sulaiman Y (2018) Synergistic enhancement of ternary poly(3,4-ethylenedioxythiophene)/graphene oxide/manganese oxide composite as a symmetrical electrode for supercapacitors. Energies 11(6):1510. https://doi.org/10.3390/en11061510

    Article  CAS  Google Scholar 

  51. Eisenberg O, Algavi YM, Weissman H, Narevicius J, Rybtchinski B, Lahav M, van Der Boom ME (2020) Dual function metallo-organic assemblies for electrochromic-hybrid supercapacitors. Adv Mater Interfaces 7(16):2000718. https://doi.org/10.1002/admi.202000718

    Article  CAS  Google Scholar 

  52. Liang Q, Wan J, Ji P, Zhang D, Sheng N, Chen S (2022) Continuous and integrated PEDOT@Bacterial cellulose/CNT hybrid helical fiber with “reinforced cement-sand” structure for self-stretchable solid supercapacitor. Chem Eng J 427:131904. https://doi.org/10.1016/j.cej.2021.131904

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from Fujian Guoguang Xinye Sci-Tec Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

YW contributed to investigation and writing—original draft. JJ was responsible for formal analysis, investigation, and writing—original draft. BL contributed to validation, data curation, writing—review and editing, and supervision.

Corresponding author

Correspondence to Baoming Li.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Ethical approval

Not applicable.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, J. & Li, B. Acid orange 7 doped poly(3,4-ethylenedioxythiophene)/molybdenum disulfide/reduced graphene oxide composite as an electrode material for flexible all-solid-state supercapacitors. J Mater Sci 59, 2055–2069 (2024). https://doi.org/10.1007/s10853-024-09336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09336-7

Navigation