Skip to main content
Log in

High-performance photodetector based on ReS2/WSe2/Te dual van der Waals heterojunctions

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Self-powered photodiodes based on the photovoltaic effect have garnered substantial attention, addressing the pressing need for a new generation of optoelectronic nanodevices. However, conventional junction-type self-powered photodetectors exhibit performance limitations. In this paper, we propose a high-speed phototransistor incorporating a dual van der Waals heterostructure (vdWH) of ReS2/WSe2/Te. The device demonstrates a low dark current level (10−14 A). In self-powered mode, the device exhibits exceptional optical response at 785 nm laser (10 µW), achieving a responsivity of 13.98 mA·W−1, a detectivity of 1.65 × 1011 Jones, and an on/off ratio of up to 106. Additionally, the device displays a fast rise/fall time of 7.2/7.14 µs at 532 nm laser (10 µW). Energy band analysis and carrier transfer studies reveal that the floating heterojunction at the bottom of the dual vdWH effectively increases the photogenerated carriers in the top vdWH layer as well as reduces their recombination. This photodetector design provides a practical pathway toward the development of high-performance phototransistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yan F, Wei Z, Wei X, Lv Q, Zhu W, Wang K (2018) Toward high-performance photodetectors based on 2D materials: strategy on methods. Small Methods 2(5):1700349. https://doi.org/10.1002/smtd.201700349

    Article  CAS  Google Scholar 

  2. Chen Y, Wang X, Huang L et al (2021) Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nat Commun 12(1):4030. https://doi.org/10.1038/s41467-021-24296-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng R, Wang F, Yin L, Wang Z, Wen Y, Shifa TA, He J (2018) High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat Electr 1(6):356–361. https://doi.org/10.1038/s41928-018-0086-0

    Article  CAS  Google Scholar 

  4. Xin Y, Wang X, Chen Z et al (2020) Polarization-sensitive self-powered type-II GeSe/MoS2 van der Waals heterojunction photodetector. ACS Appl Mater Interfaces 12(13):15406–15413. https://doi.org/10.1021/acsami.0c01405

    Article  CAS  PubMed  Google Scholar 

  5. Li K, Wang W, Li J, Jiang W, Feng M, He Y (2020) High-responsivity, self-driven photodetectors based on monolayer WS2/GaAs heterojunction. Photon Res 8(8):1368–1374. https://doi.org/10.1364/PRJ.396880

    Article  Google Scholar 

  6. Qin F, Gao F, Dai M et al (2020) Multilayer InSe–Te van der waals heterostructures with an ultrahigh rectification ratio and ultrasensitive photoresponse. ACS Appl Mater Interfaces 12(33):37313–37319. https://doi.org/10.1021/acsami.0c08461

    Article  CAS  PubMed  Google Scholar 

  7. Wu W, Zhang Q, Zhou X, Li L, Su J, Wang F, Zhai T (2018) Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 51:45–53. https://doi.org/10.1016/j.nanoen.2018.06.049

    Article  CAS  Google Scholar 

  8. Wu F, Li Q, Wang P et al (2019) High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun 10(1):4663. https://doi.org/10.1038/s41467-019-12707-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai M, Chen H, Wang F et al (2020) Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 14(7):9098–9106. https://doi.org/10.1021/acsnano.0c04329

    Article  CAS  PubMed  Google Scholar 

  10. Ouyang W, Teng F, He JH, Fang X (2019) Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv Func Mater 29(9):1807672. https://doi.org/10.1002/adfm.201807672

    Article  CAS  Google Scholar 

  11. Chow PC, Matsuhisa N, Zalar P, Koizumi M, Yokota T, Someya T (2018) Dual-gate organic phototransistor with high-gain and linear photoresponse. Nat Commun 9(1):4546. https://doi.org/10.1038/s41467-018-06907-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Qiu G, Wang R et al (2018) Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electr 1(4):228–236. https://doi.org/10.1038/s41928-018-0058-4

    Article  Google Scholar 

  13. Castellanos-Gomez A, Buscem M, Molenaar R, Singh V, Janssen L, Van Der Zant HS, Steele GA (2014) Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 4D Mater 1(1):011002. https://doi.org/10.1088/2053-1583/1/1/011002

    Article  CAS  Google Scholar 

  14. Liu F, Zheng S, He X et al (2016) Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv Func Mater 26(8):1169–1177. https://doi.org/10.1002/adfm.201504546

    Article  CAS  Google Scholar 

  15. Zhang E, Jin Y, Yuan X et al (2015) ReS2-based field-effect transistors and photodetectors. Adv Func Mater 25(26):4076–4082. https://doi.org/10.1002/adfm.201500969

    Article  CAS  Google Scholar 

  16. Zhao W, Ghorannevi Z, Amara KK et al (2013) Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 5(20):9677–9683. https://doi.org/10.1039/C3NR03052K

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Campbell PM, Tarasov A, Joiner CA et al (2016) Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2. Nanoscale 8(4):2268–2276. https://doi.org/10.1039/C5NR06180F

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Havener RW, Zhuang H, Brown L, Hennig RG, Park J (2012) Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett 12(6):3162–3167. https://doi.org/10.1021/nl301137k

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Liu K, Zhang L, Cao T et al (2014) Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat Commun 5(1):4966. https://doi.org/10.1038/ncomms5966

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Nayak PK, Horbatenko Y, Ahn S et al (2017) Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11(4):4041–4050. https://doi.org/10.1021/acsnano.7b00640

    Article  CAS  PubMed  Google Scholar 

  21. Chiu MH, Li MY, Zhang G et al (2014) Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS nano 8(9):9649–9656. https://doi.org/10.1021/nn504229z

    Article  CAS  PubMed  Google Scholar 

  22. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805. https://doi.org/10.1103/PhysRevLett.105.136805

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Splendiani A, Sun L, Zhang Y et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4):1271–1275. https://doi.org/10.1021/nl903868w

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Varghese A, Saha D, Thakar K et al (2019) Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett 20(3):1707–1717. https://doi.org/10.1021/acs.nanolett.9b04879

    Article  ADS  CAS  Google Scholar 

  25. Luo Z, Yang M, Wu D et al (2022) Rational design of WSe2/WS2/WSe2 dual junction phototransistor incorporating high responsivity and detectivity. Small Methods 6(9):2200583. https://doi.org/10.1002/smtd.202200583

    Article  CAS  Google Scholar 

  26. Huang Z, Zhou Y, Luo Z et al (2022) Integration of photovoltaic and photogating effects in a WSe2/WS2/p-Si dual junction photodetector featuring high-sensitivity and fast-response. Nanoscale Adv 5(3):675–684. https://doi.org/10.1039/d2na00552b

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang W, Wang W, Meng Y et al (2022) Mixed-dimensional anti-ambipolar phototransistors based on 1D GaAsSb/2D MoS2 heterojunctions. ACS Nano 16(7):11036–11048. https://doi.org/10.1021/acsnano.2c03673

    Article  CAS  PubMed  Google Scholar 

  28. Lee YT, Jeon PJ, Han JH et al (2017) Mixed-dimensional 1D ZnO–2D WSe2 van der waals heterojunction device for photosensors. Adv Func Mater 27(47):1703822. https://doi.org/10.1002/adfm.201703822

    Article  CAS  Google Scholar 

  29. Tan C, Yin S, Chen J et al (2021) Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 15(5):8328–8337. https://doi.org/10.1021/acsnano.0c09593

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Meng Y, Wang W et al (2022) Highly efficient full van der Waals 1D p-Te/2D n-Bi2O2Se heterodiodes with nanoscale ultra-photosensitive channels. Adv Func Mater 32(30):2203003. https://doi.org/10.1002/adfm.202203003

    Article  CAS  Google Scholar 

  31. Long M, Liu E, Wang P et al (2016) Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett 16(4):2254–2259. https://doi.org/10.1021/acs.nanolett.5b04538

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Jiang Y, Wang R, Li X et al (2021) Photovoltaic field-effect photodiodes based on double van der Waals heterojunctions. ACS Nano 15(9):14295–14304. https://doi.org/10.1021/acsnano.1c02830

    Article  CAS  PubMed  Google Scholar 

  33. Choi W, Akhtar I, Kang D, Lee YJ, Jung J, Kim YH, Seo Y (2020) Optoelectronics of multijunction heterostructures of transition metal dichalcogenides. Nano Letters 20(3):1934–1943. https://doi.org/10.1021/acs.nanolett.9b05212

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zeng P, Wang W, Han D et al (2022) MoS2/WSe2 vdW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes. ACS Nano 16(6):9329–9338. https://doi.org/10.1021/acsnano.2c02012

    Article  CAS  PubMed  Google Scholar 

  35. Long M, Wang P, Fang H, Hu W (2019) Progress, challenges, and opportunities for 2D material based photodetectors. Adv Func Mater 29(19):1803807. https://doi.org/10.1002/adfm.201803807

    Article  CAS  Google Scholar 

  36. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9(10):780–793. https://doi.org/10.1038/nnano.2014.215

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Clifford JP, Konstantatos G, Johnston KW, Hoogland S, Levina L, Sargent EH (2009) Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat Nanotechnol 4(1):40–44. https://doi.org/10.1038/nnano.2008.313

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zheng Z, Yao J, Xiao J, Yang G (2016) Synergistic effect of hybrid multilayer In2Se3 and nanodiamonds for highly sensitive photodetectors. ACS Appl Mater Interfaces 8(31):20200–20211. https://doi.org/10.1021/acsami.6b06531

    Article  CAS  PubMed  Google Scholar 

  39. Zhou X, Gan L, Tian W et al (2015) Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv Mater 27(48):8035–8041. https://doi.org/10.1002/adma.201503873

    Article  CAS  PubMed  Google Scholar 

  40. Zheng Z, Yao J, Yang G (2017) Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl Mater Interfaces 9(17):14920–14928. https://doi.org/10.1021/acsami.7b02166

    Article  CAS  PubMed  Google Scholar 

  41. Luo P, Wang F, Qu J, Liu K, Hu X, Liu K, Zhai T (2021) Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv Func Mater 31(8):2008351. https://doi.org/10.1002/adfm.202008351

    Article  CAS  Google Scholar 

  42. Lu Y, Wang Y, Xu C et al (2021) Construction of PtSe2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications. Nanoscale 13(16):7606–7612. https://doi.org/10.1039/D1NR00333J

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Z, Yao J, Yang G (2017) Self-assembly of the lateral In2Se3/CuInSe2 heterojunction for enhanced photodetection. ACS Appl Mater Interfaces 9(8):7288–7296. https://doi.org/10.1021/acsami.6b16323

    Article  CAS  PubMed  Google Scholar 

  44. Dai M, Chen H, Feng R et al (2018) A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 12(8):8739–8747. https://doi.org/10.1021/acsnano.8b04931

    Article  CAS  PubMed  Google Scholar 

  45. Jia S, Jin Z, Zhang J et al (2020) Lateral monolayer MoSe2–WSe2 p–n heterojunctions with giant built-in potentials. Small 16(34):2002263. https://doi.org/10.1002/smll.202002263

    Article  CAS  Google Scholar 

  46. Liao F, Deng J, Chen X et al (2019) A dual-gate MoS2 photodetector based on interface coupling effect. Small 16(1):1904369. https://doi.org/10.1002/smll.201904369

    Article  CAS  Google Scholar 

  47. Tsai TH, Liang ZY, Lin YC, Wang CC, Lin KI, Suenaga K, Chiu PW (2020) Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano 14(4):4559–4566. https://doi.org/10.1021/acsnano.0c00098

    Article  CAS  PubMed  Google Scholar 

  48. Gao F, Chen H, Feng W et al (2021) High-performance van der waals metal-insulator-semiconductor photodetector optimized with valence band matching. Adv Func Mater 31(35):2104359. https://doi.org/10.1002/adfm.202104359

    Article  CAS  Google Scholar 

  49. Shen C, Liu Y, Wu J et al (2019) Tellurene photodetector with high gain and wide bandwidth. ACS Nano 14(1):303–310. https://doi.org/10.1021/acsnano.9b04507

    Article  CAS  Google Scholar 

  50. Li J, Cao D, Chen F et al (2022) Polarity-reversible Te/WSe2 van der Waals heterodiode for a logic rectifier and polarized short-wave infrared photodetector. ACS Appl Mater Interfaces 14(47):53202–53212. https://doi.org/10.1021/acsami.2c17331

    Article  CAS  PubMed  Google Scholar 

  51. Zhao D, Chen Y, Jiang W et al (2021) Gate-tunable photodiodes based on mixed-dimensional Te/MoTe2 van der waals heterojunctions. Adv Electr Mater 7(5):2001066. https://doi.org/10.1002/aelm.202001066

    Article  CAS  Google Scholar 

  52. Chen P, Zhang TT, Xiang J et al (2016) Gate tunable WSe2–BP van der Waals heterojunction devices. Nanoscale 8(6):3254–3258. https://doi.org/10.1039/C5NR09218C

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Jo SH, Lee HW, Shim J, Heo K, Kim M, Song YJ, Park JH (2018) Highly efficient infrared photodetection in a gate-controllable van der waals heterojunction with staggered bandgap alignment. Adv Sci 5(4):1700423. https://doi.org/10.1002/advs.201700423

    Article  CAS  Google Scholar 

  54. Yang M, Luo Z, Gao W et al (2022) Robust deposition of sub-millimeter WSe2 drive ultrasensitive gate-tunable 2D material photodetectors. Adv Opt Mater 10(19):2200717. https://doi.org/10.1002/adom.202200717

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61904043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangting Wu.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1755 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wen, Y., Zhan, Y. et al. High-performance photodetector based on ReS2/WSe2/Te dual van der Waals heterojunctions. J Mater Sci 59, 2024–2034 (2024). https://doi.org/10.1007/s10853-024-09333-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09333-w

Navigation