Skip to main content

Advertisement

Log in

Micro/nanoengineering of functionalized metal surfaces based on short/ultra-short-pulsed lasers: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the advancement of micro/nanotechnology, precise control of the interaction between light and matter at the micro/nanoscale is crucial for successful material processing and surface functionalization. Ultrafast lasers with ultra-short pulses have gained attention due to their high spatial resolution and low thermal damage, enabling extremely smooth and precise machining on various metal surfaces. At the same time, shorter pulse nanosecond lasers, which have a wider application range, strike a balance between achieving high-precision microfabrication and mitigating adverse thermal effects caused by millisecond lasers. By adjusting laser processing parameters, it is possible to create large-scale micro/nanostructures with complex shapes, delicate textures, and special functionalities, applicable in fields such as optics, electronics, and biomedicine. Short/ultrafast pulse laser fabrication technology opens up more possibilities and prospects for the realization of diverse functional micro/nanostructures. This comprehensive review provides an overview of the interaction mechanisms between short/ultra-short-pulse laser micro/nanoprocessing and materials. By integrating theoretical models such as the two-temperature model and the Drude–Lorentz model, along with comprehensive numerical simulation methods, a brief summary of the ablation behavior of metal surfaces under short/ultra-short-pulse lasers is provided. Furthermore, we delve into the controllability of microstructures, laser-induced periodic surface structures at the nanoscale, and other types of nanostructures under different processing conditions. Thorough analysis and discussion are conducted from multiple perspectives, including surface topography and functional impacts. Subsequently, the focus shifts to the functionalization of metal surfaces with micro/nanostructures, and an in-depth investigation and review are conducted in areas such as surface wettability, bio-inspired surfaces, optical diffraction, and advanced biomedicine. Finally, the advantages and limitations of laser texturing processing techniques are discussed, and the future development of functionalized metal surfaces is anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Sugioka K, Cheng Y (2014) Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 3:e149–e149. https://doi.org/10.1038/lsa.2014.30

    Article  ADS  CAS  Google Scholar 

  2. Liu X-Q, Chen Q-D, Guan K-M, Ma Z-C, Yu Y-H, Li Q-K, Tian Z-N, Sun H-B (2017) Dry-etching-assisted femtosecond laser machining: Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev 11:1600115. https://doi.org/10.1002/lpor.201600115

    Article  ADS  CAS  Google Scholar 

  3. Chambonneau M, Li Q, Fedorov VYu, Blothe M, Schaarschmidt K, Lorenz M, Tzortzakis S, Nolte S (2021) Taming ultrafast laser filaments for optimized semiconductor-metal welding. Laser Photonics Rev 15:2000433. https://doi.org/10.1002/lpor.202000433

    Article  ADS  CAS  Google Scholar 

  4. Ródenas A, Gu M, Corrielli G, Paiè P, John S, Kar AK, Osellame R (2019) Three-dimensional femtosecond laser nanolithography of crystals. Nature Photon 13:105–109. https://doi.org/10.1038/s41566-018-0327-9

    Article  ADS  CAS  Google Scholar 

  5. Penilla EH, Devia-Cruz LF, Wieg AT, Martinez-Torres P, Cuando-Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay JE (2019) Ultrafast laser welding of ceramics. Science 365:803–808. https://doi.org/10.1126/science.aaw6699

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jia X, Chen Y, Liu L, Wang C, Duan J (2022) Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing. Opt Laser Technol 153:108209. https://doi.org/10.1016/j.optlastec.2022.108209

    Article  Google Scholar 

  7. Liang W, Zhu L, Li W, Liu H (2015) Facile fabrication of a flower-like CuO/Cu(OH)2 nanorod film with tunable wetting transition and excellent stability. RSC Adv 5:38100–38110. https://doi.org/10.1039/C5RA04359J

    Article  ADS  CAS  Google Scholar 

  8. Rao AV, Latthe SS, Mahadik SA, Kappenstein C (2011) Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2011.01.099

    Article  Google Scholar 

  9. Wilkinson M, Ka A, Basahel SN, Carmalt CJ, Parkin IP (2013) Combinatorial atmospheric pressure chemical vapor deposition of graded TiO2−VO2 mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings. ACS Comb Sci. https://doi.org/10.1021/co400027p

    Article  PubMed  Google Scholar 

  10. Sun C, Ji S, Wang H, Wang X, Wang R (2022) Effect of surface reconstruction induced by different electrochemical methods on hydrogen evolution performance of Ni2P array catalysts. Int J Hydrog Energy 47:17097–17106. https://doi.org/10.1016/j.ijhydene.2022.03.186

    Article  CAS  Google Scholar 

  11. Celia E (2013) Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2013.03.041

    Article  PubMed  Google Scholar 

  12. Su J (2016) Fabrication of super-microporous nanocrystalline zirconia with high thermal stability. Chem Phys Lett 5:4. https://doi.org/10.1016/j.cplett.2016.03.003

    Article  CAS  Google Scholar 

  13. Liu Y, Wu M, Zhang Z, Lu J, Xu K, Zhu H, Wu Y, Wang B, Lei W (2023) A review on applications of functional superhydrophobic surfaces prepared by laser biomimetic manufacturing. J Mater Sci 58:3421–3459. https://doi.org/10.1007/s10853-023-08217-9

    Article  ADS  CAS  Google Scholar 

  14. Yang Y, Yang J, Xue L, Guo Y (2010) Surface patterning on periodicity of femtosecond laser-induced ripples. Appl Phys Lett 97:141101. https://doi.org/10.1063/1.3495785

    Article  ADS  CAS  Google Scholar 

  15. Fadeeva E, Chichkov B (2018) Biomimetic liquid-repellent surfaces by ultrafast laser processing. Appl Sci. https://doi.org/10.3390/app8091424

    Article  Google Scholar 

  16. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8. https://doi.org/10.1007/s004250050096

    Article  CAS  Google Scholar 

  17. Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36–36. https://doi.org/10.1038/432036a

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter. https://doi.org/10.1039/B612667G

    Article  PubMed  Google Scholar 

  19. Farooqi IS, Keogh JM, Kamath S, Jones S, Gibson WT, Trussell R, Jebb SA, Lip GYH, O’Rahilly S (2001) Water capture by a desert beetle. Nature 414:34–35. https://doi.org/10.1038/35102112

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Fang RH, Kroll AV, Gao W, Zhang L (2018) Cell membrane coating nanotechnology. Adv Mater. https://doi.org/10.1002/adma.201706759

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21:665–669. https://doi.org/10.1002/adma.200801782

    Article  CAS  Google Scholar 

  22. Guo Z, Liu W (2007) Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 172:1103–1112. https://doi.org/10.1016/j.plantsci.2007.03.005

    Article  CAS  Google Scholar 

  23. Chen Z, Yang J, Liu H, Zhao Y, Pan R (2022) A short review on functionalized metallic surfaces by ultrafast laser micromachining. Int J Adv Manuf Technol 119:6919–6948. https://doi.org/10.1007/s00170-021-08560-8

    Article  Google Scholar 

  24. Farooqi IS, Keogh JM, Kamath S, Jones S, Gibson WT, Trussell R, Jebb SA, Lip GYH, O’Rahilly S (2001) Partial leptin deficiency and human adiposity. Nature 414:34–35. https://doi.org/10.1038/35102112

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2011) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography**. Adv Mater, 55390–393

  26. Biswas S, Karthikeyan A, Kietzig A-M (2016) Effect of repetition rate on femtosecond laser-induced homogenous microstructures. Materials 9:1023. https://doi.org/10.3390/ma9121023

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonse J, Höhm S, Rosenfeld A, Krüger J (2013) Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air. Appl Phys A 110:547–551. https://doi.org/10.1007/s00339-012-7140-y

    Article  ADS  CAS  Google Scholar 

  28. Koda K, Kobayashi W, Imai H, Tsukamoto M (2018) Formation of microstructures on Ni film surface by nanosecond laser irradiation. Appl Phys A 124:227. https://doi.org/10.1007/s00339-018-1635-0

    Article  ADS  CAS  Google Scholar 

  29. Rosa B, Mognol P, Hascoët J (2015) Laser polishing of additive laser manufacturing surfaces. J Laser Appl 27:S29102. https://doi.org/10.2351/1.4906385

    Article  Google Scholar 

  30. Wang X, Jia Z, Ma J, Han D, Qi X, Gui C, Liu W (2022) Prediction method of radial heat-affected zone width in nanosecond pulsed laser ablation of TC4 titanium alloy. Int J Adv Manuf Technol 121:2663–2670. https://doi.org/10.1007/s00170-022-09408-5

    Article  Google Scholar 

  31. Sassmannshausen A, Brenner A, Finger J (2021) Ultrashort pulse laser polishing by continuous surface melting. J Mater Process Technol 293:117058. https://doi.org/10.1016/j.jmatprotec.2021.117058

    Article  Google Scholar 

  32. Li Z, Zhang D, Su X, Yang S, Xu J, Ma R, Shan D, Guo B (2021) Removal mechanism of surface cleaning on TA15 titanium alloy using nanosecond pulsed laser. Opt Laser Technol 139:106998. https://doi.org/10.1016/j.optlastec.2021.106998

    Article  CAS  Google Scholar 

  33. Sakamoto H (2013) Practical definition method of laser ablation threshold in nano-second order pulse duration considering intensity distribution at focal point. JLMN 8:45–50. https://doi.org/10.2961/jlmn.2013.01.0010

    Article  CAS  Google Scholar 

  34. Shivakoti I, Kibria G, Pradhan BB (2019) Predictive model and parametric analysis of laser marking process on gallium nitride material using diode pumped Nd:YAG laser. Opt Laser Technol 115:58–70. https://doi.org/10.1016/j.optlastec.2019.01.035

    Article  ADS  CAS  Google Scholar 

  35. Shaheen ME, Gagnon JE, Fryer BJ (2016) Excimer laser ablation of aluminum: influence of spot size on ablation rate. Laser Phys 26:116102. https://doi.org/10.1088/1054-660X/26/11/116102

    Article  ADS  Google Scholar 

  36. Cao Y, Zhao X, Shin YC (2013) Analysis of nanosecond laser ablation of aluminum with and without phase explosion in air and water. J Laser Appl 25:032002. https://doi.org/10.2351/1.4794032

    Article  CAS  Google Scholar 

  37. Wang Y, Zhang M, Huang Y, Cao X, Dong Y, Zhao J, Li Y, Wang Y (2022) Ablation threshold modelling and validation of metal Nanosecond laser processing. Opt Commun 523:128608. https://doi.org/10.1016/j.optcom.2022.128608

    Article  CAS  Google Scholar 

  38. Dasallas LL, Garcia WO (2018) Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model. Mater Res Express 5:016518. https://doi.org/10.1088/2053-1591/aaa4e8

    Article  ADS  CAS  Google Scholar 

  39. Wang Y, Zhang M, Huang Y, Cao X, Dong Y, Zhao J, Li Y, Wang Y (2022) Ablation threshold modelling and validation of metal nanosecond laser processing. Opt Commun. https://doi.org/10.1016/j.optcom.2022.128608

    Article  Google Scholar 

  40. Furusawa K, Takahashi K, Kumagai H, Midorikawa K, Obara M (1999) Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl Phys A Mater Sci Process 69:S359–S366. https://doi.org/10.1007/s003390051417

    Article  ADS  CAS  Google Scholar 

  41. Mannion PT, Magee J, Coyne E, O’Connor GM, Glynn TJ (2004) The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci 233:275–287. https://doi.org/10.1016/j.apsusc.2004.03.229

    Article  ADS  CAS  Google Scholar 

  42. Fang RR, Zhang DM, Wei H, Hu DZ, Li ZH, Tan XY, Sun M, Yang FX (2008) A unified thermal model of thermophysical effects with pulse width from nanosecond to femtosecond. Eur Phys J Appl Phys 42:229–234. https://doi.org/10.1051/epjap:2008061

    Article  ADS  CAS  Google Scholar 

  43. Zhang J, Chen Y, Hu M, Chen X (2015) An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum. J Appl Phys 117:063104. https://doi.org/10.1063/1.4907990

    Article  ADS  CAS  Google Scholar 

  44. Saghebfar M, Tehrani MK, Darbani SMR, Majd AE (2017) Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations. Appl Phys A 123:28. https://doi.org/10.1007/s00339-016-0660-0

    Article  ADS  CAS  Google Scholar 

  45. Starinskiy SV, Rodionov AA, Shukhov YG, Maximovskiy EA, Bulgakov AV (2019) Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water. Appl Phys A 125:734. https://doi.org/10.1007/s00339-019-3028-4

    Article  ADS  CAS  Google Scholar 

  46. Struleva EV, Komarov PS, Ashitkov SI (2019) Comparison of femtosecond laser ablation of gold and nickel. High Temp 57:659–662. https://doi.org/10.1134/S0018151X19050158

    Article  CAS  Google Scholar 

  47. Genieys T, Sentis M, Utéza O (2020) Investigation of ultrashort laser excitation of aluminum and tungsten by reflectivity measurements. Appl Phys A 126:263. https://doi.org/10.1007/s00339-020-3440-9

    Article  ADS  CAS  Google Scholar 

  48. Peng Z, Yin J, Cui Y, Cao Y, Lu L, Yan Y, Hu Z (2022) Numerical and experimental investigation on pulsed nanosecond laser ablation processing of aluminum alloy. J Market Res 19:4708–4720. https://doi.org/10.1016/j.jmrt.2022.07.029

    Article  CAS  Google Scholar 

  49. Wang Y, Zhang M, Dong Y, Zhao J, Zhu X, Li Y, Fan L, Leng H (2023) Morphology modelling and validation in nanosecond pulsed laser ablation of metallic materials. Precis Eng 79:34–42. https://doi.org/10.1016/j.precisioneng.2022.08.010

    Article  Google Scholar 

  50. Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196. https://doi.org/10.1364/OL.7.000196

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Anisimov SI (1996) Vaporization of metal absorbing laser radiation. In: World Scientific Series in 20th Century Physics, World Scientific, pp 14–15. https://doi.org/10.1142/9789814317344_0002

  52. Long J, Cao Z, Lin C, Zhou C, He Z, Xie X (2019) Formation mechanism of hierarchical micro- and nanostructures on copper induced by low-cost nanosecond lasers. Appl Surf Sci 464:412–421. https://doi.org/10.1016/j.apsusc.2018.09.055

    Article  ADS  CAS  Google Scholar 

  53. Farid N, Harilal SS, Ding H, Hassanein A (2014) Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures. J Appl Phys 115:033107. https://doi.org/10.1063/1.4862167

    Article  ADS  CAS  Google Scholar 

  54. Mazzi A, Miotello A (2017) Simulation of phase explosion in the nanosecond laser ablation of aluminum. J Colloid Interface Sci 489:126–130. https://doi.org/10.1016/j.jcis.2016.08.016

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Gattass RR, Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nature Photon 2:219–225. https://doi.org/10.1038/nphoton.2008.47

    Article  ADS  CAS  Google Scholar 

  56. Cheng J, Liu C-S, Shang S, Liu D, Perrie W, Dearden G, Watkins K (2013) A review of ultrafast laser materials micromachining. Opt Laser Technol 46:88–102. https://doi.org/10.1016/j.optlastec.2012.06.037

    Article  ADS  Google Scholar 

  57. García-Vidal FJ, Pendry JB (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77:1163–1166. https://doi.org/10.1103/PhysRevLett.77.1163

    Article  ADS  PubMed  Google Scholar 

  58. Anisimov SI (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh Eksp Teor Fiz, 3

  59. Watanabe W, Li Y, Itoh K (2016) Ultrafast laser micro-processing of transparent material. Opt Laser Technol 78:52–61. https://doi.org/10.1016/j.optlastec.2015.09.023

    Article  ADS  CAS  Google Scholar 

  60. Niu CN, Han JY, Hu SP, Chao DY, Song XG, Howlader MMR, Cao J (2021) Fast and environmentally friendly fabrication of superhydrophilic-superhydrophobic patterned aluminum surfaces. Surfaces and Interfaces 22:100830. https://doi.org/10.1016/j.surfin.2020.100830

    Article  CAS  Google Scholar 

  61. Li H, Li L, Huang R, Tan C, Yang J, Xia H, Chen B, Song X (2021) The effect of surface texturing on the laser-induced wetting behavior of AlSi5 alloy on Ti6Al4V alloy. Appl Surf Sci 566:150630. https://doi.org/10.1016/j.apsusc.2021.150630

    Article  CAS  Google Scholar 

  62. Lian Z, Xu J, Yu Z, Yu P, Yu H (2019) A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance. J Alloy Compd 793:326–335. https://doi.org/10.1016/j.jallcom.2019.04.169

    Article  CAS  Google Scholar 

  63. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  64. Bharatish A, Murthy HNN, Anand B, Madhusoodana CD, Praveena GS, Krishna M (2013) Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics. Opt Laser Technol 53:22–32. https://doi.org/10.1016/j.optlastec.2013.04.010

    Article  ADS  CAS  Google Scholar 

  65. Yan Y, Ji L, Bao Y, Jiang Y (2012) experimental and numerical study on laser percussion drilling of thick-section alumina. J Mater Process Technol 212:1257–1270. https://doi.org/10.1016/j.jmatprotec.2012.01.010

    Article  CAS  Google Scholar 

  66. Kacar E, Mutlu M, Akman E, Demir A, Candan L, Canel T, Gunay V, Sınmazcelik T (2009) Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser. J Mater Process Technol 209:2008–2014. https://doi.org/10.1016/j.jmatprotec.2008.04.049

    Article  CAS  Google Scholar 

  67. Ng GKL, Li L (2001) The e ect of laser peak power and pulse width on the hole geometry repeatability in laser percussion drilling. Opt Laser Technol, 10

  68. Li J, Ji L, Hu Y, Bao Y (2016) Precise micromachining of yttria-tetragonal zirconia polycrystal ceramic using 532 nm nanosecond laser. Ceram Int 42:4377–4385. https://doi.org/10.1016/j.ceramint.2015.11.118

    Article  CAS  Google Scholar 

  69. Vazquez-Martinez J, Gomez JS, Ares PM, Fernandez-Vidal S, Ponce MB (2018) Effects of laser microtexturing on the wetting behavior of Ti6Al4V alloy. Coatings 8:145. https://doi.org/10.3390/coatings8040145

    Article  CAS  Google Scholar 

  70. Jagdheesh R (2014) Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses. Langmuir 30:12067–12073. https://doi.org/10.1021/la5033527

    Article  CAS  PubMed  Google Scholar 

  71. Li J, Xu J, Lian Z, Yu Z, Yu H (2020) Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation. Opt Laser Technol 126:106129. https://doi.org/10.1016/j.optlastec.2020.106129

    Article  CAS  Google Scholar 

  72. Birnbaum M (1965) Semiconductor surface damage produced by ruby lasers. J Appl Phys 36:3688–3689. https://doi.org/10.1063/1.1703071

    Article  ADS  MathSciNet  CAS  Google Scholar 

  73. van Driel HM, Sipe JE, Young JF (1982) Laser-induced periodic surface structure on solids: a universal phenomenon. Phys Rev Lett 49:1955–1958. https://doi.org/10.1103/PhysRevLett.49.1955

    Article  ADS  Google Scholar 

  74. Bonse J, Gräf S (2020) Maxwell meets Marangoni: a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. https://doi.org/10.1002/lpor.202000215

    Article  Google Scholar 

  75. Wu X, Zheng L, Wu D (2005) Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Langmuir 21:2665–2667. https://doi.org/10.1021/la050275y

    Article  CAS  PubMed  Google Scholar 

  76. Orazi L, Romoli L, Schmidt M, Li L (2021) Ultrafast laser manufacturing: from physics to industrial applications. CIRP Ann 70:543–566. https://doi.org/10.1016/j.cirp.2021.05.007

    Article  Google Scholar 

  77. Vorobyev AY, Guo C (2015) Multifunctional surfaces produced by femtosecond laser pulses. J Appl Phys 117:033103. https://doi.org/10.1063/1.4905616

    Article  ADS  CAS  Google Scholar 

  78. Sciancalepore C, Gemini L, Romoli L, Bondioli F (2018) Study of the wettability behavior of stainless steel surfaces after ultrafast laser texturing. Surf Coat Technol 352:370–377. https://doi.org/10.1016/j.surfcoat.2018.08.030

    Article  CAS  Google Scholar 

  79. Rukosuyev MV, Lee J, Cho SJ, Lim G, Jun MBG (2014) One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation. Appl Surf Sci 313:411–417. https://doi.org/10.1016/j.apsusc.2014.05.224

    Article  CAS  Google Scholar 

  80. Jia TQ, Chen HX, Huang M, Zhao FL, Qiu JR, Li RX, Xu ZZ, He XK, Zhang J, Kuroda H (2055) Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys Rev B 4

  81. Yang T, Qiao X, Rong Q, Bao W (2017) Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement. Opt Laser Technol 93:138–142. https://doi.org/10.1016/j.optlastec.2017.01.033

    Article  ADS  CAS  Google Scholar 

  82. Zhou S (2022) Hybrid periodic microstructures fabricated on chromium metal surface using ns-DLIP scanning combined with LIPSS. Opt Laser Technol 13

  83. Florian C, Kirner SV, Krüger J, Bonse J (2020) Surface functionalization by laser-induced periodic surface structures. J Laser Appl 32:022063. https://doi.org/10.2351/7.0000103

    Article  CAS  Google Scholar 

  84. Gnilitskyi I, Derrien TJ-Y, Levy Y, Bulgakova NM, Mocek T, Orazi L (2017) High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci Rep 7:8485. https://doi.org/10.1038/s41598-017-08788-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ardron M (2014) A practical technique for the generation of highly uniform LIPSS. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2014.05.154

    Article  Google Scholar 

  86. Jia T, Baba M, Suzuki M, Ganeev RA, Qiu J, Wang X, Li R, Xu Z (2008) Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses. Opt Express. https://doi.org/10.1364/OE.16.001874

    Article  PubMed  Google Scholar 

  87. Jia X, Jia T, Zhang Y, Xiong P, Feng D, Sun Z, Xu Z (2010) Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams. Opt Express 18:14401. https://doi.org/10.1364/OE.18.014401

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Vorobyev AY, Guo C (2007) Femtosecond laser structuring of titanium implants. Appl Surf Sci 253:7272–7280. https://doi.org/10.1016/j.apsusc.2007.03.006

    Article  ADS  CAS  Google Scholar 

  89. Vorobyev AY, Guo C (2013) Direct femtosecond laser surface nano/microstructuring and its applications: direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7:385–407. https://doi.org/10.1002/lpor.201200017

    Article  ADS  CAS  Google Scholar 

  90. Wu C, Crouch CH, Zhao L, Carey JE, Younkin R, Levinson JA, Mazur E, Farrell RM, Gothoskar P, Karger A (2001) Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett 78:1850–1852. https://doi.org/10.1063/1.1358846

    Article  ADS  CAS  Google Scholar 

  91. Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis SH, Fotakis C (2008) Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20:4049–4054. https://doi.org/10.1002/adma.200800651

    Article  CAS  Google Scholar 

  92. Baldacchini T, Carey JE, Zhou M, Mazur E (2006) Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22:4917–4919. https://doi.org/10.1021/la053374k

    Article  CAS  PubMed  Google Scholar 

  93. Nayak BK, Iyengar VV, Gupta MC (2011) Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures: efficient light trapping in Si solar cells. Prog Photovolt: Res Appl 19:631–639. https://doi.org/10.1002/pip.1067

    Article  CAS  Google Scholar 

  94. Myers RA, Farrell R, Karger AM, Carey JE, Mazur E (2006) Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring. Appl Opt 45:8825. https://doi.org/10.1364/AO.45.008825

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Madore C, Piotrowski O, Landolt D (1999) Through-mask electrochemical micromachining of titanium. J Electrochem Soc 146:2526–2532. https://doi.org/10.1149/1.1391966

    Article  CAS  Google Scholar 

  96. Pető G, Karacs A, Pászti Z, Guczi L, Divinyi T, Joób A (2002) Surface treatment of screw shaped titanium dental implants by high intensity laser pulses. Appl Surf Sci 186:7–13. https://doi.org/10.1016/S0169-4332(01)00769-3

    Article  ADS  Google Scholar 

  97. Wennerberg A, Albrektsson T, Johansson C, Andersson B (1996) blasting material and surface topography. Biomaterials 17:8

    Google Scholar 

  98. Li J, Xiong D, Wu H, Huang Z, Dai J, Tyagi R (2010) Tribological properties of laser surface texturing and molybdenizing duplex-treated Ni-base alloy. Tribol Trans 53:195–202. https://doi.org/10.1080/10402000903097478

    Article  CAS  Google Scholar 

  99. Nayak BK, Gupta MC (2010) Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt Lasers Eng 48:940–949. https://doi.org/10.1016/j.optlaseng.2010.04.010

    Article  Google Scholar 

  100. Nayak BK, Gupta MC, Kolasinski KW (2008) Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation. Appl Phys A 90:399–402. https://doi.org/10.1007/s00339-007-4349-2

    Article  ADS  CAS  Google Scholar 

  101. Dolgaev SI, Fernández-Pradas JM, Morenza JL, Serra P, Shafeev GA (2006) Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation. Appl Phys A 83:417–420. https://doi.org/10.1007/s00339-006-3562-8

    Article  ADS  CAS  Google Scholar 

  102. Voronov VV, Dolgaev SI, Lavrishchev SV, Lyalin AA, Simakin AV, Shafeev GA (2000) Formation of conic microstructures upon pulsed laser evaporation of solids. Quantum Electron 30:710–714. https://doi.org/10.1070/QE2000v030n08ABEH001795

    Article  ADS  CAS  Google Scholar 

  103. Nayak BK, Gupta MC, Kolasinski KW (2007) Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation. Nanotechnology 18:195302. https://doi.org/10.1088/0957-4484/18/19/195302

    Article  ADS  CAS  Google Scholar 

  104. Kuršelis K, Kiyan R, Chichkov BN (2012) Formation of corrugated and porous steel surfaces by femtosecond laser irradiation. Appl Surf Sci 258:8845–8852. https://doi.org/10.1016/j.apsusc.2012.05.102

    Article  ADS  CAS  Google Scholar 

  105. Ahmmed KMT, Ling EJY, Servio P, Kietzig A-M (2015) Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt Lasers Eng 66:258–268. https://doi.org/10.1016/j.optlaseng.2014.09.017

    Article  Google Scholar 

  106. Moradi S, Kamal S, Englezos P, Hatzikiriakos SG (2013) Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity. Nanotechnology 24:415302. https://doi.org/10.1088/0957-4484/24/41/415302

    Article  CAS  PubMed  Google Scholar 

  107. Demir AG, Furlan V, Lecis N, Previtali B (2014) Laser surface structuring of AZ31 Mg alloy for controlled wettability. Biointerphases 9:029009. https://doi.org/10.1116/1.4868240

    Article  CAS  Google Scholar 

  108. Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019. https://doi.org/10.1021/la104607g

    Article  CAS  PubMed  Google Scholar 

  109. Noh J, Lee J-H, Na S, Lim H, Jung D-H (2010) Fabrication of hierarchically micro- and nano-structured mold surfaces using laser ablation for mass production of superhydrophobic surfaces. Jpn J Appl Phys 49:106502. https://doi.org/10.1143/JJAP.49.106502

    Article  ADS  CAS  Google Scholar 

  110. Zhang H, Gu D, Ma C, Xia M, Guo M (2019) Surface wettability and superhydrophobic characteristics of Ni-based nanocomposites fabricated by selective laser melting. Appl Surf Sci 476:151–160. https://doi.org/10.1016/j.apsusc.2019.01.060

    Article  ADS  CAS  Google Scholar 

  111. Sharma V, Sharma V, Goyat MS, Hooda A, Pandey JK, Kumar A, Gupta R, Upadhyay AK, Prakash R, Kirabira JB, Mandal P, Bhargav PK (2020) Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: a critical review. Prog Organ Coat 140:105512. https://doi.org/10.1016/j.porgcoat.2019.105512

    Article  CAS  Google Scholar 

  112. Ijaola AO, Bamidele EA, Akisin CJ, Bello IT, Oyatobo AT, Abdulkareem A, Farayibi PK, Asmatulu E (2020) Wettability transition for laser textured surfaces: a comprehensive review. Surf Interfaces 21:100802. https://doi.org/10.1016/j.surfin.2020.100802

    Article  CAS  Google Scholar 

  113. Goto T, Nakata K, Baba K, Nishimura M, Magariyama Y (2005) A fluid-dynamic interpretation of the asymmetric motion of singly flagellated bacteria swimming close to a boundary. Biophys J 89:3771–3779. https://doi.org/10.1529/biophysj.105.067553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Frymier PD, Ford RM, Berg HC, Cummings PT (1995) Three-dimensional tracking of motile bacteria near a solid planar surface. Proc Natl Acad Sci USA 92:6195–6199. https://doi.org/10.1073/pnas.92.13.6195

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Asmatulu E, Subeshan B, Twomey J, Overcash M (2020) Increasing the lifetime of products by nanomaterial inclusions—life cycle energy implications. Int J Life Cycle Assess 25:1783–1789. https://doi.org/10.1007/s11367-020-01794-w

    Article  Google Scholar 

  116. Chen X, Yang X, Yang M, Zhang HP (2015) Dynamic clustering in suspension of motile bacteria. EPL 111:54002. https://doi.org/10.1209/0295-5075/111/54002

    Article  ADS  CAS  Google Scholar 

  117. Hooda A, Goyat MS, Pandey JK, Kumar A, Gupta R (2020) A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog Organ Coat 142:105557. https://doi.org/10.1016/j.porgcoat.2020.105557

    Article  CAS  Google Scholar 

  118. Liu Y, Kolbakir C, Hu H, Hu H (2018) A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation. Int J Heat Mass Transf 124:319–330. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.076

    Article  Google Scholar 

  119. Zhang L, Zhao N, Xu J (2014) Fabrication and application of superhydrophilic surfaces: a review. J Adhes Sci Technol 28:769–790. https://doi.org/10.1080/01694243.2012.697714

    Article  CAS  Google Scholar 

  120. T. Engelhardt, A. Heider, R. Weber, T. Graf (2015) Time-resolved X-ray analysis of the keyhole behavior during laser welding of steel and aluminum at reduced ambient pressure. In: International congress on applications of lasers and electro-optics, Laser Institute of America, Atlanta, Georgia, USA, pp 250–256. https://doi.org/10.2351/1.5063174

  121. Israelachvili J (2011) Intermolecular and surface forces. Elsevier https://doi.org/10.1016/C2009-0-21560-1

  122. Ahmed G, Tash OA, Cook J, Trybala A, Starov V (2017) Biological applications of kinetics of wetting and spreading. Adv Coll Interface Sci 249:17–36. https://doi.org/10.1016/j.cis.2017.08.004

    Article  CAS  Google Scholar 

  123. Bormashenko E.Yu (2018) Wetting of real surfaces. De Gruyter. https://doi.org/10.1515/9783110583144

  124. Omeje IS, Itina TE (2022) Numerical study of the wetting dynamics of droplet on laser textured surfaces: beyond classical Wenzel and Cassie–Baxter model. Appl Surf Sci Adv 9:100250. https://doi.org/10.1016/j.apsadv.2022.100250

    Article  Google Scholar 

  125. Drelich J, Chibowski E (2010) Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir 26:18621–18623. https://doi.org/10.1021/la1039893

    Article  CAS  PubMed  Google Scholar 

  126. Cassie ABD (1948) Contact angles. Discuss Faraday Soc 3:11. https://doi.org/10.1039/df9480300011

    Article  Google Scholar 

  127. Bhushan B, Nosonovsky M (2010) The rose petal effect and the modes of superhydrophobicity. Phil Trans R Soc A 368:4713–4728. https://doi.org/10.1098/rsta.2010.0203

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  128. Tanaka Y, Kimura T, Hikino K, Goto S, Nishimura M, Mano S, Nakagaw T (2012) Gateway vectors for plant genetic engineering: overview of plant vectors, application for bimolecular fluorescence complementation (BiFC) and multigene construction. In: Barrera-Saldaa H (ed), Genetic engineering - basics, new applications and responsibilities, InTech. https://doi.org/10.5772/32009

  129. Shen MY, Crouch CH, Carey JE, Mazur E (2004) Femtosecond laser-induced formation of submicrometer spikes on silicon in water. Appl Phys Lett 85:5694–5696. https://doi.org/10.1063/1.1828575

    Article  ADS  CAS  Google Scholar 

  130. Ta DV, Dunn A, Wasley TJ, Kay RW, Stringer J, Smith PJ, Connaughton C, Shephard JD (2015) Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl Surf Sci 357:248–254. https://doi.org/10.1016/j.apsusc.2015.09.027

    Article  ADS  CAS  Google Scholar 

  131. Jagdheesh R, Diaz M, Ocaña JL (2016) Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing. RSC Adv 6:72933–72941. https://doi.org/10.1039/C6RA12236A

    Article  ADS  CAS  Google Scholar 

  132. Ta VD, Dunn A, Wasley TJ, Li J, Kay RW, Stringer J, Smith PJ, Esenturk E, Connaughton C, Shephard JD (2016) Laser textured surface gradients. Appl Surf Sci 371:583–589. https://doi.org/10.1016/j.apsusc.2016.03.054

    Article  ADS  CAS  Google Scholar 

  133. Ta VD, Dunn A, Wasley TJ, Li J, Kay RW, Stringer J, Smith PJ, Esenturk E, Connaughton C, Shephard JD (2016) Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Appl Surf Sci 365:153–159. https://doi.org/10.1016/j.apsusc.2016.01.019

    Article  ADS  CAS  Google Scholar 

  134. Yang Z, Tian YL, Yang CJ, Wang FJ, Liu XP (2017) Modification of wetting property of Inconel 718 surface by nanosecond laser texturing. Appl Surf Sci 414:313–324. https://doi.org/10.1016/j.apsusc.2017.04.050

    Article  ADS  CAS  Google Scholar 

  135. Cardoso JT, Garcia-Girón A, Romano JM, Huerta-Murillo D, Jagdheesh R, Walker M, Dimov SS, Ocaña JL (2017) Influence of ambient conditions on the evolution of wettability properties of an IR-, ns-laser textured aluminium alloy. RSC Adv 7:39617–39627. https://doi.org/10.1039/C7RA07421B

    Article  ADS  CAS  Google Scholar 

  136. Long J, Zhong M, Zhang H, Fan P (2015) Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J Colloid Interface Sci 441:1–9. https://doi.org/10.1016/j.jcis.2014.11.015

    Article  ADS  CAS  PubMed  Google Scholar 

  137. Kietzig A-M, Hatzikiriakos SG, Englezos P (2009) Patterned superhydrophobic metallic surfaces. Langmuir 25:4821–4827. https://doi.org/10.1021/la8037582

    Article  CAS  PubMed  Google Scholar 

  138. Bizi-bandoki P, Valette S, Audouard E, Benayoun S (2013) Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations. Appl Surf Sci 273:399–407. https://doi.org/10.1016/j.apsusc.2013.02.054

    Article  ADS  CAS  Google Scholar 

  139. Gregorčič P, Šetina-Batič B, Hočevar M (2017) Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences. Appl Phys A 123:766. https://doi.org/10.1007/s00339-017-1392-5

    Article  ADS  CAS  Google Scholar 

  140. Wang XC, Wang B, Xie H, Zheng HY, Lam YC (2018) Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity. J Phys D: Appl Phys 51:115305. https://doi.org/10.1088/1361-6463/aaad24

    Article  ADS  CAS  Google Scholar 

  141. Yang Z, Liu X, Tian Y (2019) Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J Colloid Interface Sci 533:268–277. https://doi.org/10.1016/j.jcis.2018.08.082

    Article  ADS  CAS  PubMed  Google Scholar 

  142. Yang C, Mei X, Tian Y, Zhang D, Li Y, Liu X (2016) Modification of wettability property of titanium by laser texturing. Int J Adv Manuf Technol 87:1663–1670. https://doi.org/10.1007/s00170-016-8601-9

    Article  Google Scholar 

  143. Wahab JA, Ghazali MJ, Yusoff WMW, Sajuri Z (2016) Enhancing material performance through laser surface texturing: a review. Trans IMF 94:193–198. https://doi.org/10.1080/00202967.2016.1191141

    Article  CAS  Google Scholar 

  144. Jagdheesh R, García-Ballesteros JJ, Ocaña JL (2016) One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation. Appl Surf Sci 374:2–11. https://doi.org/10.1016/j.apsusc.2015.06.104

    Article  ADS  CAS  Google Scholar 

  145. Tang M (2011) Laser ablation of metal substrates for super-hydrophobic effect. JLMN 6:6–9. https://doi.org/10.2961/jlmn.2011.01.0002

    Article  CAS  Google Scholar 

  146. Guan YC, Luo FF, Lim GC, Hong MH, Zheng HY, Qi B (2015) Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method. Mater Des 78:19–24. https://doi.org/10.1016/j.matdes.2015.04.021

    Article  CAS  Google Scholar 

  147. Pou P, Del Val J, Riveiro A, Comesaña R, Arias-González F, Lusquiños F, Bountinguiza M, Quintero F, Pou J (2019) Laser texturing of stainless steel under different processing atmospheres: from superhydrophilic to superhydrophobic surfaces. Appl Surf Sci 475:896–905. https://doi.org/10.1016/j.apsusc.2018.12.248

    Article  ADS  CAS  Google Scholar 

  148. Pendurthi A, Movafaghi S, Wang W, Shadman S, Yalin AP, Kota AK (2017) Fabrication of nanostructured omniphobic and superomniphobic surfaces with inexpensive CO2 laser Engraver. ACS Appl Mater Interfaces 9:25656–25661. https://doi.org/10.1021/acsami.7b06924

    Article  CAS  PubMed  Google Scholar 

  149. Kam DH, Bhattacharya S, Mazumder J (2012) Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification. J Micromech Microeng 22:105019. https://doi.org/10.1088/0960-1317/22/10/105019

    Article  CAS  Google Scholar 

  150. Li B, Li H, Huang L, Ren N, Kong X (2016) Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity. Appl Surf Sci 389:585–593. https://doi.org/10.1016/j.apsusc.2016.07.137

    Article  ADS  CAS  Google Scholar 

  151. Wang Q, Wang H, Zhu Z, Xiang N, Wang Z, Sun G (2021) Switchable wettability control of titanium via facile nanosecond laser-based surface texturing. Surf Interfaces 24:101122. https://doi.org/10.1016/j.surfin.2021.101122

    Article  CAS  Google Scholar 

  152. Chun D-M, Ngo C-V, Lee K-M (2016) Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing. CIRP Ann 65:519–522. https://doi.org/10.1016/j.cirp.2016.04.019

    Article  Google Scholar 

  153. Lian Z, Xu J, Yu Z, Yu P, Ren W, Wang Z, Yu H (2020) Reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces. ACS Appl Mater Interfaces 12:6573–6580. https://doi.org/10.1021/acsami.9b17639

    Article  CAS  PubMed  Google Scholar 

  154. Ngo C-V, Chun D-M (2017) Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing. Appl Surf Sci 409:232–240. https://doi.org/10.1016/j.apsusc.2017.03.038

    Article  ADS  CAS  Google Scholar 

  155. Ngo C-V, Chun D-M (2018) Effect of heat treatment temperature on the wettability transition from hydrophilic to superhydrophobic on laser-ablated metallic surfaces. Adv Eng Mater 20:1701086. https://doi.org/10.1002/adem.201701086

    Article  CAS  Google Scholar 

  156. O’Gara JE, Alden BA, Gendreau CA, Iraneta PC, Walter TH (2000) Dependence of cyano bonded phase hydrolytic stability on ligand structure and solution pH. J Chromatogr A 893:245–251. https://doi.org/10.1016/S0021-9673(00)00696-8

    Article  PubMed  Google Scholar 

  157. Samanta A, Wang Q, Singh G, Shaw SK, Toor F, Ratner A, Ding H (2020) Nanosecond pulsed laser processing turns engineering metal alloys antireflective and superwicking. J Manuf Process 54:28–37. https://doi.org/10.1016/j.jmapro.2020.02.029

    Article  Google Scholar 

  158. Ngo C-V, Chun D-M (2018) Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing. Appl Surf Sci 435:974–982. https://doi.org/10.1016/j.apsusc.2017.11.185

    Article  ADS  CAS  Google Scholar 

  159. He A, Liu W, Xue W, Yang H, Cao Y (2018) Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing. Appl Surf Sci 434:120–125. https://doi.org/10.1016/j.apsusc.2017.10.143

    Article  ADS  CAS  Google Scholar 

  160. Sarbada S, Shin YC (2017) Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser. Appl Surf Sci 405:465–475. https://doi.org/10.1016/j.apsusc.2017.02.019

    Article  ADS  CAS  Google Scholar 

  161. Vorobyev AY, Makin VS, Guo C (2007) Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J Appl Phys 101:034903. https://doi.org/10.1063/1.2432288

    Article  ADS  CAS  Google Scholar 

  162. Huang H, Jun N, Jiang M, Ryoko M, Yan J (2016) Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate. Mater Des 109:153–161. https://doi.org/10.1016/j.matdes.2016.07.056

    Article  CAS  Google Scholar 

  163. Liu Y-H, Kuo K-K, Cheng C-W, Lee A-C (2022) Femtosecond laser two-beam interference applied to 4H-SiC surface hierarchical micro-nano structure fabrication. Opt Laser Technol 151:108081. https://doi.org/10.1016/j.optlastec.2022.108081

    Article  CAS  Google Scholar 

  164. Liu Z, Pan N, Tao H, Lin J (2021) Temperature-dependent wetting characteristics of micro–nano-structured metal surface formed by femtosecond laser. J Mater Sci 56:3525–3534. https://doi.org/10.1007/s10853-020-05457-x

    Article  ADS  CAS  Google Scholar 

  165. Heinroth F, Münzer S, Feldhoff A, Passinger S, Cheng W, Reinhardt C, Chichkov B, Behrens P (2009) Three-dimensional titania pore structures produced by using a femtosecond laser pulse technique and a dip coating procedure. J Mater Sci 44:6490–6497. https://doi.org/10.1007/s10853-009-3321-2

    Article  ADS  CAS  Google Scholar 

  166. Shen X, Zou B, Huang C, Zhang Y, Liu T, Yang L (2023) Femtosecond laser and oscillation induced large-scale periodic micro/nanostructures on copper surfaces. Opt Laser Technol 161:109166. https://doi.org/10.1016/j.optlastec.2023.109166

    Article  Google Scholar 

  167. Huerta-Murillo D, Aguilar-Morales AI, Alamri S, Cardoso JT, Jagdheesh R, Lasagni AF, Ocaña JL (2017) Fabrication of multi-scale periodic surface structures on Ti–6Al–4V by direct laser writing and direct laser interference patterning for modified wettability applications. Opt Lasers Eng 98:134–142. https://doi.org/10.1016/j.optlaseng.2017.06.017

    Article  Google Scholar 

  168. Huerta-Murillo D, García-Girón A, Romano JM, Cardoso JT, Cordovilla F, Walker M, Dimov SS, Ocaña JL (2019) Wettability modification of laser-fabricated hierarchical surface structures in Ti–6Al–4V titanium alloy. Appl Surf Sci 463:838–846. https://doi.org/10.1016/j.apsusc.2018.09.012

    Article  ADS  CAS  Google Scholar 

  169. Xin B, Hao J (2010) Reversibly switchable wettability. Chem Soc Rev 39:769–782. https://doi.org/10.1039/B913622C

    Article  CAS  PubMed  Google Scholar 

  170. Wang B, Liang W, Guo Z, Liu W (2015) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361. https://doi.org/10.1039/C4CS00220B

    Article  PubMed  Google Scholar 

  171. Zhang J, Chen F, Lu Y, Zhang Z, Liu J, Chen Y, Liu X, Yang X, Carmalt CJ, Parkin IP (2020) Superhydrophilic–superhydrophobic patterned surfaces on glass substrate for water harvesting. J Mater Sci 55:498–508. https://doi.org/10.1007/s10853-019-04046-x

    Article  ADS  CAS  Google Scholar 

  172. Lee SG, Lee DY, Lim HS, Lee DH, Lee S, Cho K (2010) Switchable transparency and wetting of elastomeric smart windows. Adv Mater 22:5013–5017. https://doi.org/10.1002/adma.201002320

    Article  CAS  PubMed  Google Scholar 

  173. Zheng J, Bao S, Jin P (2015) TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: combination of energy-saving, antifogging and self-cleaning functions. Nano Energy 11:136–145. https://doi.org/10.1016/j.nanoen.2014.09.023

    Article  CAS  Google Scholar 

  174. Irajizad P, Hasnain M, Farokhnia N, Sajadi SM, Ghasemi H (2016) Magnetic slippery extreme icephobic surfaces. Nat Commun 7:13395. https://doi.org/10.1038/ncomms13395

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. Peng Y, He Y, Yang S, Ben S, Cao M, Li K, Liu K, Jiang L (2015) Magnetically induced fog harvesting via flexible conical arrays. Adv Funct Mater 25:5967–5971. https://doi.org/10.1002/adfm.201502745

    Article  CAS  Google Scholar 

  176. Tian D, Zhang X, Tian Y, Wu Y, Wang X, Zhai J, Jiang L (2012) Photo-induced water–oil separation based on switchable superhydrophobicity–superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. J Mater Chem 22:19652. https://doi.org/10.1039/c2jm34056a

    Article  CAS  Google Scholar 

  177. Ju G, Cheng M, Shi F (2014) A pH-responsive smart surface for the continuous separation of oil/water/oil ternary mixtures. NPG Asia Mater 6:e111–e111. https://doi.org/10.1038/am.2014.44

    Article  CAS  Google Scholar 

  178. Gao SJ, Shi Z, Zhang WB, Zhang F, Jin J (2014) Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 8:6344–6352. https://doi.org/10.1021/nn501851a

    Article  CAS  PubMed  Google Scholar 

  179. Chen N, Pan Q (2013) Versatile fabrication of ultralight magnetic foams and application for oil-water separation. ACS Nano 7:6875–6883. https://doi.org/10.1021/nn4020533

    Article  CAS  PubMed  Google Scholar 

  180. Tian D, Zhang N, Zheng X, Hou G, Tian Y, Du Y, Jiang L, Dou SX (2016) Fast responsive and controllable liquid transport on a magnetic fluid/nanoarray composite interface. ACS Nano 10:6220–6226. https://doi.org/10.1021/acsnano.6b02318

    Article  CAS  PubMed  Google Scholar 

  181. Li L, Wu J, Jin X (2018) CNN denoising for medical image based on wavelet domain. In: 2018 9th International conference on information technology in medicine and education (ITME), IEEE, Hangzhou, China, pp 105–109. https://doi.org/10.1109/ITME.2018.00033

  182. Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22:707–710. https://doi.org/10.1002/adma.200902512

    Article  CAS  PubMed  Google Scholar 

  183. Cheng Z, Feng L, Jiang L (2008) Tunable adhesive superhydrophobic surfaces for superparamagnetic microdroplets. Adv Funct Mater 18:3219–3225. https://doi.org/10.1002/adfm.200800481

    Article  CAS  Google Scholar 

  184. Jiang S, Hu Y, Wu H, Zhang Y, Zhang Y, Wang Y, Zhang Y, Zhu W, Li J, Wu D, Chu J (2019) Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration. Adv Mater 31:1807507. https://doi.org/10.1002/adma.201807507

    Article  CAS  Google Scholar 

  185. Gao Y, Cheng M, Wang B, Feng Z, Shi F (2010) Diving-surfacing cycle within a stimulus-responsive smart device towards developing functionally cooperating systems. Adv Mater 22:5125–5128. https://doi.org/10.1002/adma.201001577

    Article  CAS  PubMed  Google Scholar 

  186. Li M, Wang B, Heng L, Jiang L (2014) Surface-independent reversible transition of oil adhesion under water induced by lewis acid-base interactions. Adv Mater Interfaces 1:1400298. https://doi.org/10.1002/admi.201400298

    Article  CAS  Google Scholar 

  187. Cheng Z, Lai H, Du Y, Fu K, Hou R, Li C, Zhang N, Sun K (2014) pH-Induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity. ACS Appl Mater Interfaces 6:636–641. https://doi.org/10.1021/am4047393

    Article  CAS  PubMed  Google Scholar 

  188. Yao X, Hu Y, Grinthal A, Wong T-S, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Mater 12:529–534. https://doi.org/10.1038/nmat3598

    Article  ADS  CAS  Google Scholar 

  189. Wang J-N, Liu Y-Q, Zhang Y-L, Feng J, Wang H, Yu Y-H, Sun H-B (2018) Wearable superhydrophobic elastomer skin with switchable wettability. Adv Funct Mater 28:1800625. https://doi.org/10.1002/adfm.201800625

    Article  CAS  Google Scholar 

  190. Wang J-N, Liu Y-Q, Zhang Y-L, Feng J, Sun H-B (2018) Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity. NPG Asia Mater 10:e470–e470. https://doi.org/10.1038/am.2017.218

    Article  CAS  Google Scholar 

  191. Yong J, Chen F, Yang Q, Farooq U, Hou X (2015) Photoinduced switchable underwater superoleophobicity–superoleophilicity on laser modified titanium surfaces. J Mater Chem A 3:10703–10709. https://doi.org/10.1039/C5TA01782C

    Article  CAS  Google Scholar 

  192. Yong J, Chen F, Yang Q, Fang Y, Huo J, Hou X (2015) Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability. Chem Commun 51:9813–9816. https://doi.org/10.1039/C5CC02939B

    Article  CAS  Google Scholar 

  193. Tian D, Zhang X, Zhai J, Jiang L (2011) Photocontrollable water permeation on the micro/nanoscale hierarchical structured ZnO mesh films. Langmuir 27:4265–4270. https://doi.org/10.1021/la105112g

    Article  CAS  PubMed  Google Scholar 

  194. Jiao Y, Li C, Wu S, Hu Y, Li J, Yang L, Wu D, Chu J (2018) Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning. ACS Appl Mater Interfaces 10:16867–16873. https://doi.org/10.1021/acsami.8b02812

    Article  CAS  PubMed  Google Scholar 

  195. Ju G, Cheng M, Xiao M, Xu J, Pan K, Wang X, Zhang Y, Shi F (2013) Smart transportation between three phases through a stimulus-responsive functionally cooperating device. Adv Mater 25:2915–2919. https://doi.org/10.1002/adma.201205240

    Article  CAS  PubMed  Google Scholar 

  196. Liu H, Zhang X, Wang S, Jiang L (2015) Underwater thermoresponsive surface with switchable oil-wettability between superoleophobicity and superoleophilicity. Small 11:3338–3342. https://doi.org/10.1002/smll.201403190

    Article  CAS  PubMed  Google Scholar 

  197. Zhao X-D, Fan H-M, Luo J, Ding J, Liu X-Y, Zou B-S, Feng Y-P (2011) Electrically adjustable, super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane. Adv Funct Mater 21:184–190. https://doi.org/10.1002/adfm.201000603

    Article  CAS  Google Scholar 

  198. Xu L, Ye Q, Lu X, Lu Q (2014) Electro-responsively reversible transition of polythiophene films from superhydrophobicity to superhydrophilicity. ACS Appl Mater Interfaces 6:14736–14743. https://doi.org/10.1021/am5043627

    Article  CAS  PubMed  Google Scholar 

  199. Lian Z, Xu J, Wang Z, Weng Z, Xu Z, Yu H (2016) Reversibly switchable wettability between underwater superoleophobicity and oleophobicity of titanium surface via ethanol immersion and dark storage. Appl Surf Sci 390:244–247. https://doi.org/10.1016/j.apsusc.2016.08.064

    Article  ADS  CAS  Google Scholar 

  200. Jiao Y, Li C, Lv X, Zhang Y, Wu S, Chen C, Hu Y, Li J, Wu D, Chu J (2018) In situ tunable bubble wettability with fast response induced by solution surface tension. J Mater Chem A 6:20878–20886. https://doi.org/10.1039/C8TA08777F

    Article  CAS  Google Scholar 

  201. Yong J, Singh SC, Zhan Z, Chen F, Guo C (2019) Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water. ACS Appl Mater Interfaces 11:8667–8675. https://doi.org/10.1021/acsami.8b21465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lian Z, Xu J, Yu Z, Yu P, Ren W, Wang Z, Yu H (2020) Bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces. ACS Appl Mater Interfaces 12:6573–6580. https://doi.org/10.1021/acsami.9b17639

    Article  CAS  PubMed  Google Scholar 

  203. Yong J, Chen F, Fang Y, Huo J, Yang Q, Zhang J, Bian H, Hou X (2017) Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl Mater Interfaces 9:39863–39871. https://doi.org/10.1021/acsami.7b14819

    Article  CAS  PubMed  Google Scholar 

  204. Chen Z, Zhou R, Yan H, Lin Y, Huang W, Yuan G, Cui J (2022) Bioinspired robust top-perforated micro-conical array of TC4 surface fabricated by pulsed laser ablation for enhanced anti-icing property. J Mater Sci 57:8890–8903. https://doi.org/10.1007/s10853-022-07194-9

    Article  ADS  CAS  Google Scholar 

  205. Wang B, Guo Z (2013) Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl Phys Lett 103:063704. https://doi.org/10.1063/1.4817922

    Article  ADS  CAS  Google Scholar 

  206. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182. https://doi.org/10.1039/B612667G

    Article  ADS  CAS  PubMed  Google Scholar 

  207. Boesel LF, Greiner C, Arzt E, Del Campo A* (2018) Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv Mater 37:419–427

  208. Huang H, Zhang P, Tang M, Shen L, Yu Z, Shi H, Tian Y (2022) Biocompatibility of micro/nano structures on the surface of Ti6Al4V and Ti-based bulk metallic glasses induced by femtosecond laser. Biomater Adv 139:212998. https://doi.org/10.1016/j.bioadv.2022.212998

    Article  CAS  PubMed  Google Scholar 

  209. Jiao Y, Brousseau E, Ayre WN, Gait-Carr E, Shen X, Wang X, Bigot S, Zhu H, He W (2021) In vitro cytocompatibility of a Zr-based metallic glass modified by laser surface texturing for potential implant applications. Appl Surf Sci 547:149194. https://doi.org/10.1016/j.apsusc.2021.149194

    Article  CAS  Google Scholar 

  210. Bereznai M, Pelso I (2003) Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials. https://doi.org/10.1016/S0142-9612(03)00318-1

    Article  PubMed  Google Scholar 

  211. Bathomarco RV, Solorzano G, Elias CN, Prioli R (2004) Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces. Appl Surf Sci 233:29–34. https://doi.org/10.1016/j.apsusc.2004.04.007

    Article  ADS  CAS  Google Scholar 

  212. Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, Boyan B (2005) Differential regulation of osteoblasts by substrate microstructural features., Biomaterials 11

  213. Stratakis E, Ranella A, Farsari M, Fotakis C (2009) Laser-based micro/nanoengineering for biological applications. Prog Quantum Electron. https://doi.org/10.1016/j.pquantelec.2009.06.001

    Article  Google Scholar 

  214. Fadeeva E, Schlie S, Koch J, Chichkov BN (2013) Selective cell control by surface structuring for orthopedic applications. J Adhesion Sci Technol 16

  215. Girolamo FD, Masotti A, Salvatori G, Scapaticci M, Muraca M, Putignani L (2014) A sensitive and effective proteomic approach to identify she-donkey’s and goat’s milk adulterations by MALDI-TOF MS fingerprinting. IJMS 15:13697–13719. https://doi.org/10.3390/ijms150813697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kim G-H, Lee B-H, Im H, Jeon S-B, Kim D, Seol M-L, Hwang H, Choi Y-K (2016) Controlled anisotropic wetting of scalloped silicon nanogroove. RSC Adv 6:41914–41918. https://doi.org/10.1039/C6RA06379A

    Article  ADS  CAS  Google Scholar 

  217. Sun Y, Chen L, Liu N, Wang H, Liang C (2021) Laser-modified Fe–30Mn surfaces with promoted biodegradability and biocompatibility toward biological applications. J Mater Sci 56:13772–13784. https://doi.org/10.1007/s10853-021-06139-y

    Article  ADS  CAS  Google Scholar 

  218. Paun IA, Zamfirescu M, Mihailescu M, Luculescu CR, Mustaciosu CC, Dorobantu I, Calenic B, Dinescu M (2015) Laser micro-patterning of biodegradable polymer blends for tissue engineering. J Mater Sci 50:923–936. https://doi.org/10.1007/s10853-014-8652-y

    Article  ADS  CAS  Google Scholar 

  219. Cunha A, Zouani OF, Plawinski L, do Rego AMB, Almeida A, Vilar R, Durrieu M-C (2015) Human mesenchymal stem cell behavior on femtosecond laser-textured Ti–6Al–4V surfaces. Nanomedicine 10:725–739. https://doi.org/10.2217/nnm.15.19

  220. Zhang R, Wan Y, Ai X, Wang T, Men B (2016) Preparation of micro-nanostructure on titanium implants and its bioactivity. Trans Nonferrous Met Soc China 26:1019–1024. https://doi.org/10.1016/S1003-6326(16)64217-6

    Article  CAS  Google Scholar 

  221. Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6:2711–2720. https://doi.org/10.1016/j.actbio.2010.01.016

    Article  CAS  PubMed  Google Scholar 

  222. Wang W, Mei X, Jiang G, Lei S, Yang C (2008) Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals. Appl Surf Sci 255:2303–2311. https://doi.org/10.1016/j.apsusc.2008.07.100

    Article  ADS  CAS  Google Scholar 

  223. Liang C, Wang H, Yang J, Li B, Yang Y, Li H (2012) Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser. Appl Surf Sci 261:337–342. https://doi.org/10.1016/j.apsusc.2012.08.011

    Article  ADS  CAS  Google Scholar 

  224. Mittal KL (ed) (2009) Contact angle, wettability and adhesion, vol. 6, 0 ed., CRC Press. https://doi.org/10.1201/b12247

  225. Jeong Y-H, Choe H-C, Brantley WA (2011) Nanostructured thin film formation on femtosecond laser-textured Ti–35Nb–xZr alloy for biomedical applications. Thin Solid Films 519:4668–4675. https://doi.org/10.1016/j.tsf.2011.01.014

    Article  ADS  CAS  Google Scholar 

  226. Muhammad N, Li L (2012) Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture. Appl Phys A 107:849–861. https://doi.org/10.1007/s00339-012-6795-8

    Article  ADS  CAS  Google Scholar 

  227. Heublein B (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656. https://doi.org/10.1136/heart.89.6.651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

  229. Chen Z-C, Chang T-L, Wu Q-X, Liu C-C, Chen H-C, Huang C-H (2023) Surface modification of bio-orderly CrTiN thin films with periodic corrugated nanopod structures by picosecond laser ablation. J Alloy Compd 938:168193. https://doi.org/10.1016/j.jallcom.2022.168193

    Article  CAS  Google Scholar 

  230. Hoy CL, Ferhanoglu O, Yildirim M, Kim KH, Karajanagi SS, Chan KMC, Kobler JB, Zeitels SM, Ben-Yakar A (2014) Clinical ultrafast laser surgery: recent advances and future directions. IEEE J Select Topics Quantum Electron 20:242–255. https://doi.org/10.1109/JSTQE.2013.2287098

    Article  ADS  CAS  Google Scholar 

  231. Chung SH, Mazur E (2009) Surgical applications of femtosecond lasers. J Biophoton 2:557–572. https://doi.org/10.1002/jbio.200910053

    Article  Google Scholar 

  232. Goldman L, Hornby P, Meyer R, Goldman B (1964) Impact of the laser on dental caries. Nature 203:417–417. https://doi.org/10.1038/203417a0

    Article  ADS  CAS  PubMed  Google Scholar 

  233. Berns MW (1972) Partial cell irradiation with a tunable organic dye laser. Nature 240:483–485. https://doi.org/10.1038/240483a0

    Article  ADS  CAS  PubMed  Google Scholar 

  234. Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg Med 9:338–344. https://doi.org/10.1002/lsm.1900090405

  235. Keller U, Hibst R (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: II. Light microscopic and SEM investigations. Lasers Surg Med 9:345–351. https://doi.org/10.1002/lsm.1900090406

    Article  CAS  PubMed  Google Scholar 

  236. Xiong Z, Li H, Kunwar P, Zhu Y, Ramos R, Mcloughlin S, Winston T, Ma Z, Soman P (2019) Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment. Biofabrication 11:035005. https://doi.org/10.1088/1758-5090/ab0f8b

    Article  ADS  CAS  PubMed  Google Scholar 

  237. Cui J, Nogales A, Ezquerra TA, Rebollar E (2023) Effect of film thickness on laser induced surface structures formation on optically transparent polymer films. Appl Surf Sci 639:158148. https://doi.org/10.1016/j.apsusc.2023.158148

    Article  CAS  Google Scholar 

  238. Prada-Rodrigo J, Rodríguez-Beltrán RI, Ezquerra TA, Moreno P, Rebollar E (2023) Influence of film thickness and substrate roughness on the formation of laser induced periodic surface structures in poly (ethylene terephthalate) films deposited over gold substrates. Opt Laser Technol 159:109007. https://doi.org/10.1016/j.optlastec.2022.109007

    Article  CAS  Google Scholar 

  239. Ariza R, Alvarez-Alegria M, Costas G, Tribaldo L, Gonzalez-Elipe AR, Siegel J, Solis J (2022) Multiscale ultrafast laser texturing of marble for reduced surface wetting. Appl Surf Sci 577:151850. https://doi.org/10.1016/j.apsusc.2021.151850

    Article  CAS  Google Scholar 

  240. Zazo R, Solis J, Sanchez-Gil JA, Ariza R, Serna R, Siegel J (2020) Deep UV laser induced periodic surface structures on silicon formed by self-organization of nanoparticles. Appl Surf Sci 520:146307. https://doi.org/10.1016/j.apsusc.2020.146307

    Article  CAS  Google Scholar 

  241. Joy N, Kietzig A-M (2023) Influence of re-deposited nanoparticles on the surface elemental composition of femtosecond laser machined copper surfaces. Surf Interfaces 41:103173. https://doi.org/10.1016/j.surfin.2023.103173

    Article  CAS  Google Scholar 

  242. Joy N, Kietzig A-M (2023) Role of machining and exposure conditions on the surface chemistry modification of femtosecond laser-machined copper surfaces. Surf Interfaces 37:102657. https://doi.org/10.1016/j.surfin.2023.102657

    Article  CAS  Google Scholar 

  243. Assaf Y, Kietzig A-M (2018) Optical and chemical effects governing femtosecond laser-induced structure formation on polymer surfaces. Mater Today Commun 14:169–179. https://doi.org/10.1016/j.mtcomm.2018.01.008

    Article  CAS  Google Scholar 

  244. Skoulas E, Tasolamprou AC, Kenanakis G, Stratakis E (2021) Laser induced periodic surface structures as polarizing optical elements. Appl Surf Sci 541:148470. https://doi.org/10.1016/j.apsusc.2020.148470

    Article  CAS  Google Scholar 

  245. Lingos P, Perrakis G, Tsilipakos O, Tsibidis GD, Stratakis E (2023) Impact of plasmonic modes on the formation of self-organized nano-patterns in thin films. Opt Laser Technol 163:109415. https://doi.org/10.1016/j.optlastec.2023.109415

    Article  Google Scholar 

  246. Fuentes-Edfuf Y, Sánchez-Gil JA, Garcia-Pardo M, Serna R, Tsibidis GD, Giannini V, Solis J, Siegel J (2019) Tuning the period of femtosecond laser induced surface structures in steel: from angled incidence to quill writing. Appl Surf Sci 493:948–955. https://doi.org/10.1016/j.apsusc.2019.07.106

    Article  ADS  CAS  Google Scholar 

  247. Zaman Khan M, Militky J, Petru M, Tomková B, Ali A, Tören E, Perveen S (2022) Recent advances in superhydrophobic surfaces for practical applications: a review. Eur Polym J 178:111481. https://doi.org/10.1016/j.eurpolymj.2022.111481

    Article  CAS  Google Scholar 

  248. Yang Q, Cao J, Ding R, Zhan K, Yang Z, Zhao B, Wang Z, Ji V (2023) The synthesis and mechanism of superhydrophobic coatings with multifunctional properties on aluminum alloys surface: a review. Prog Org Coat 183:107786. https://doi.org/10.1016/j.porgcoat.2023.107786

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Class III Peak Discipline of Shanghai—Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing).

Author information

Authors and Affiliations

Authors

Contributions

Kaichang Yu was involved in writing—original draft, writing—review & editing, investigation, data curation. Haichuan Shi helped in writing—original draft, writing—review & editing. Peilei Zhang contributed to writing—review & editing, investigation. Zhishui Yu performed conceptualization, supervision, visualization. Hua Yan assisted in project administration, resources. Qinghua Lu helped in conceptualization, methodology, data curation.

Corresponding authors

Correspondence to Haichuan Shi or Peilei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Shi, H., Zhang, P. et al. Micro/nanoengineering of functionalized metal surfaces based on short/ultra-short-pulsed lasers: a review. J Mater Sci 59, 1819–1866 (2024). https://doi.org/10.1007/s10853-023-09319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09319-0

Navigation