Skip to main content
Log in

Data-driven search for promising intercalating ions and layered materials for metal-ion batteries

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rise in demand for lithium-ion batteries has led to a large-scale search for electrode materials and intercalating ion species to meet the demands of next-generation energy technologies. Recent efforts largely focus on searching for cathodes that can accommodate large amounts of intercalating ions, but similar work on anodes is relatively limited. This study utilizes machine learning methods to find alternative two-dimensional (2D) materials and intercalating ions beyond Li for metal-ion batteries with high-power efficiencies. The approach first uses density functional theory (DFT) calculations to estimate the theoretical capacities and voltages of various metal ions on 2D materials. The DFT-generated data also provide insights into the local structural accommodation upon ion intercalation on various 2D materials. Significant changes to the lattice can result in irreversible changes to the bonding environments in the anode material, resulting in poor cycling stability. Next, this study develops a binding energy and structural accommodation-based classification model to screen anode materials for next-generation batteries. The classification model selects intercalating ions and 2D material pairs suitable for batteries based on the calculated voltage and volumetric changes in the 2D material upon intercalation. Finally, this study builds a regression model to accurately predict the binding energies of the various intercalating ions on 2D materials. The approach highlights the importance of different elemental and structural features for classification and regression tasks. The insights gained from this study on the role of involved features, such as electronegativities of the constituent ions and the presence of unfilled electronic levels, will help to streamline further studies towards the search for future layered battery materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Paul PP, McShane EJ, Colclasure AM et al (2021) A review of existing and emerging methods for lithium detection and characterization in Li-ion and li-metal batteries. Adv Energy Mater 11:2100372. https://doi.org/10.1002/aenm.202100372

    Article  CAS  Google Scholar 

  2. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51:5798–5800. https://doi.org/10.1002/anie.201105006

    Article  CAS  Google Scholar 

  3. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  4. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295. https://doi.org/10.1039/C1EE01388B

    Article  CAS  Google Scholar 

  5. Zhang M, Liu Y, Li D et al (2023) Electrochemical impedance spectroscopy: a new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries. Energies 16:1599. https://doi.org/10.3390/en16041599

    Article  CAS  Google Scholar 

  6. Peng H, Zhao Q (2021) A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine. Adv Funct Mater 31:2009430. https://doi.org/10.1002/adfm.202009430

    Article  CAS  Google Scholar 

  7. Li L, Zhang D, Deng J et al (2021) Carbon-based materials for fast charging lithium-ion batteries. Carbon 183:721–734. https://doi.org/10.1016/j.carbon.2021.07.053

    Article  CAS  Google Scholar 

  8. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654. https://doi.org/10.1039/B904116H

    Article  CAS  Google Scholar 

  9. Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43:4341–4356. https://doi.org/10.1039/C4CS00071D

    Article  CAS  Google Scholar 

  10. Liu Y, He X, Hanlon D et al (2016) Electrical, mechanical, and capacity percolation leads to high-performance MoS2/nanotube composite lithium ion battery electrodes. ACS Nano 10:5980–5990. https://doi.org/10.1021/acsnano.6b01505

    Article  CAS  Google Scholar 

  11. Yin L, Pham-Cong D, Jeon I et al (2020) Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes. J Chem Eng 382:122800. https://doi.org/10.1016/j.cej.2019.122800

    Article  CAS  Google Scholar 

  12. Goikolea E, Palomares V, Wang S et al (2020) Na-ion batteries—approaching old and new challenges. Adv Energy Mater 10:2002055. https://doi.org/10.1002/aenm.202002055

    Article  CAS  Google Scholar 

  13. Singh M, Ghosh C, Parida S et al (2021) In-situ TEM studies of structural modification in WS2 during intercalation of Li and Na. Microsc Microanal 27:654–656. https://doi.org/10.1017/S1431927621002749

    Article  Google Scholar 

  14. Hosaka T, Matsuyama T, Kubota K, Yasuno S, Komaba S (2020) Development of KPF6/KFSA binary-salt solutions for long-life and high-voltage K-ion batteries. ACS Appl Mater Interfaces 12:34873–34881. https://doi.org/10.1021/acsami.0c08002

    Article  CAS  Google Scholar 

  15. Liu Z, Su H, Yang Y, Wu T, Sun S, Yu H (2021) Advances and perspectives on transitional metal layered oxides for potassium-ion battery. Energy Storage Mater 34:211–228. https://doi.org/10.1016/j.ensm.2020.09.010

    Article  Google Scholar 

  16. Kim S, Yin L, Lee MH et al (2020) High-voltage phosphate cathodes for rechargeable Ca-ion batteries. ACS Energy Lett 5:3203–3211. https://doi.org/10.1021/acsenergylett.0c01663

    Article  CAS  Google Scholar 

  17. Yamijala SSRKC, Kwon H, Guo J, Wong BM (2021) Stability of calcium ion battery electrolytes: predictions from Ab initio molecular dynamics simulations. ACS Appl Mater Interfaces 13:13114–13122. https://doi.org/10.1021/acsami.0c21716

    Article  CAS  Google Scholar 

  18. Yaghoobnejad Asl H, Fu J, Kumar H, Welborn SS, Shenoy VB, Detsi E (2018) In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured Sn for high performance Mg-ion battery anodes. Chem Mater 30:1815–1824. https://doi.org/10.1021/acs.chemmater.7b04124

    Article  CAS  Google Scholar 

  19. Niu J, Zhang Z, Aurbach D (2020) Alloy anode materials for rechargeable Mg ion batteries. Adv Energy Mater 10:2000697. https://doi.org/10.1002/aenm.202000697

    Article  CAS  Google Scholar 

  20. Guo Q, Zeng W, Liu S-L et al (2021) Recent developments on anode materials for magnesium-ion batteries: a review. Rare Met 40:290–308. https://doi.org/10.1007/s12598-020-01493-3

    Article  CAS  Google Scholar 

  21. Elia GA, Kravchyk KV, Kovalenko MV, Chacón J, Holland A, Wills RGA (2021) An overview and prospective on Al and Al-ion battery technologies. J Power Sources 481:228870. https://doi.org/10.1016/j.jpowsour.2020.228870

    Article  CAS  Google Scholar 

  22. Faegh E, Ng B, Hayman D, Mustain WE (2021) Practical assessment of the performance of aluminium battery technologies. Nat Energy 6:21–29. https://doi.org/10.1038/s41560-020-00728-y

    Article  CAS  Google Scholar 

  23. Kim J, Kim Y, Yoo J, Kwon G, Ko Y, Kang K (2023) Organic batteries for a greener rechargeable world. Nat Rev Mater 8:54–70. https://doi.org/10.1038/s41578-022-00478-1

    Article  Google Scholar 

  24. Ma D, Yuan D, Ponce C, de León Z, Jiang XX, Pan J (2023) Current progress and future perspectives of electrolytes for rechargeable aluminum-ion batteries. Energy Environ Mater 6:e12301. https://doi.org/10.1002/eem2.12301

    Article  CAS  Google Scholar 

  25. Yang Y, Zhou J, Wang L et al (2022) Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries. Nano Energy 99:107424. https://doi.org/10.1016/j.nanoen.2022.107424

    Article  CAS  Google Scholar 

  26. Zhang T, Li D, Tao Z, Chen J (2013) Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Prog Nat Sci Mater Int 23:256–272. https://doi.org/10.1016/j.pnsc.2013.04.005

    Article  CAS  Google Scholar 

  27. Sun Y, Shi X-L, Yang Y-L et al (2022) Biomass-derived carbon for high-performance batteries: from structure to properties. Adv Funct Mater 32:2201584. https://doi.org/10.1002/adfm.202201584

    Article  CAS  Google Scholar 

  28. Parida S, Mishra A, Chen J et al (2020) Vertically stacked 2H–1T dual-phase MoS2 microstructures during lithium intercalation: a first principles study. J Am Ceram Soc 103:6603–6614. https://doi.org/10.1111/jace.17367

    Article  CAS  Google Scholar 

  29. Liu Y, Guo B, Zou X, Li Y, Shi S (2020) Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater 31:434–450. https://doi.org/10.1016/j.ensm.2020.06.033

    Article  Google Scholar 

  30. Attia PM, Grover A, Jin N et al (2020) Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578:397–402. https://doi.org/10.1038/s41586-020-1994-5

    Article  CAS  Google Scholar 

  31. Chen X, Liu X, Shen X, Zhang Q (2021) Applying machine learning to rechargeable batteries: from the microscale to the macroscale. Angew Chem Int Ed 60:24354–24570. https://doi.org/10.1002/anie.202107369

    Article  CAS  Google Scholar 

  32. Hannan MA, Lipu MSH, Hussain A et al (2020) Toward enhanced state of charge estimation of lithium-ion batteries using optimized machine learning techniques. Sci Rep 10:4687. https://doi.org/10.1038/s41598-020-61464-7

    Article  CAS  Google Scholar 

  33. Paulson NH, Kubal J, Ward L, Saxena S, Lu W, Babinec SJ (2022) Feature engineering for machine learning enabled early prediction of battery lifetime. J Power Sources 527:231127. https://doi.org/10.1016/j.jpowsour.2022.231127

    Article  CAS  Google Scholar 

  34. Golmohammadi M, Aryanpour M (2023) Analysis and evaluation of machine learning applications in materials design and discovery. Mater Today Commun 35:105494. https://doi.org/10.1016/j.mtcomm.2023.105494

    Article  CAS  Google Scholar 

  35. Ng M-F, Sun Y, Seh ZW (2023) Machine learning-inspired battery material innovation. Energy Adv 2:449. https://doi.org/10.1039/D3YA00040K

    Article  Google Scholar 

  36. Joshi RP, Eickholt J, Li L, Fornari M, Barone V, Peralta JE (2019) Machine learning the voltage of electrode materials in metal-ion batteries. Appl Mater Interfaces 11:18494–18503. https://doi.org/10.1021/acsami.9b04933

    Article  CAS  Google Scholar 

  37. Louis S-Y, Siriwardane EMD, Joshi RP, Omee SS, Kumar N, Hu J (2022) Accurate prediction of voltage of battery electrode materials using attention-based graph neural networks. ACS Appl Mater Interfaces 14:26587–26594. https://doi.org/10.1021/acsami.2c00029

    Article  CAS  Google Scholar 

  38. Zhang Y, He X, Chen Z et al (2019) Unsupervised discovery of solid-state lithium ion conductors. Nat Commun 10:5260. https://doi.org/10.1038/s41467-019-13214-1

    Article  CAS  Google Scholar 

  39. Chaney G, Ibrahim A, Ersan F, Çakır D, Ataca C (2021) Comprehensive study of lithium adsorption and diffusion on janus Mo/WXY (X, Y = S, Se, Te) using first-principles and machine learning approaches. ACS Appl Mater Interfaces 13:36388–36406. https://doi.org/10.1021/acsami.1c05508

    Article  CAS  Google Scholar 

  40. Aykol M, Gopal CB, Anapolsky A et al (2021) Perspective—combining physics and machine learning to predict battery lifetime. J Electrochem Soc 168:030525. https://doi.org/10.1149/1945-7111/abec55

    Article  CAS  Google Scholar 

  41. Sui X, He S, Vilsen SB, Meng J, Teodorescu R, Stroe D-I (2021) A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery. Appl Energy 300:117346. https://doi.org/10.1016/j.apenergy.2021.117346

    Article  Google Scholar 

  42. Tong Z, Miao J, Tong S, Lu Y (2021) Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method. J Clean Prod 317:128265. https://doi.org/10.1016/j.jclepro.2021.128265

    Article  CAS  Google Scholar 

  43. Hosen MS, Youssef R, Kalogiannis T, Van Mierlo J, Berecibar M (2021) Battery cycle life study through relaxation and forecasting the lifetime via machine learning. J Energy Storage 40:102726. https://doi.org/10.1016/j.est.2021.102726

    Article  Google Scholar 

  44. Zhang Y, Zhao M (2023) Cloud-based in-situ battery life prediction and classification using machine learning. Energy Storage Mater 57:346. https://doi.org/10.1016/j.ensm.2023.02.035

    Article  Google Scholar 

  45. Song D, Chen X, Lin Z et al (2021) Usability identification framework and high-throughput screening of two-dimensional materials in lithium ion batteries. ACS Nano 15:16469–16477. https://doi.org/10.1021/acsnano.1c05920

    Article  CAS  Google Scholar 

  46. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  47. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  48. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  49. Wang V, Xu N, Liu J-C, Tang G, Geng W-T (2021) VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 267:108033. https://doi.org/10.1016/j.cpc.2021.108033

    Article  CAS  Google Scholar 

  50. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  51. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  52. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  53. Haastrup S, Strange M, Pandey M et al (2018) The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater 5:042002. https://doi.org/10.1088/2053-1583/aacfc1

    Article  CAS  Google Scholar 

  54. Gjerding MN, Taghizadeh A, Rasmussen A et al (2021) Recent progress of the computational 2D materials database (C2DB). 2D Mater 8:044002. https://doi.org/10.1088/2053-1583/ac1059

    Article  CAS  Google Scholar 

  55. Ong SP, Richards WD, Jain A et al (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319. https://doi.org/10.1016/j.commatsci.2012.10.028

    Article  CAS  Google Scholar 

  56. Ward L, Dunn A, Faghaninia A et al (2018) Matminer: an open source toolkit for materials data mining. Comput Mater Sci 152:60–69. https://doi.org/10.1016/j.commatsci.2018.05.018

    Article  Google Scholar 

  57. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  58. Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater 7:157–180. https://doi.org/10.1016/j.ensm.2017.01.009

    Article  Google Scholar 

  59. Hamar JC, Erhard SV, Zoerr C, Jossen A (2021) Anode potential estimation in lithium-ion batteries using data-driven models for online applications. J Electrochem Soc 168:030535. https://doi.org/10.1149/1945-7111/abe721

    Article  CAS  Google Scholar 

  60. Jang B, Koo J, Park M et al (2013) Graphdiyne as a high-capacity lithium ion battery anode material. Appl Phys Lett 103:263904. https://doi.org/10.1063/1.4850236

    Article  CAS  Google Scholar 

  61. Liu T, Shao Y, Li G et al (2014) A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J Mater Chem A 2:3430–3438. https://doi.org/10.1039/C3TA14825D

    Article  CAS  Google Scholar 

  62. Pan B, Huang J, Sa N et al (2016) MgCl2: the key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries. J Electrochem Soc 163:A1672. https://doi.org/10.1149/2.0821608jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation (NSF) under Grant No. DMR-1820565. The authors acknowledge support from CINT through user proposals. CINT is the Center for Integrated Nanotechnology, which is a User Facility supported by the DOE at Sandia and Los Alamos National Laboratories. The authors would also like to acknowledge the High-Performance Computing (HPC) facilities at UConn for providing resources required to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is written through the contributions of all authors. All authors have given approval for the final version of the manuscript.

Corresponding author

Correspondence to A. M. Dongare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Jean-Francois Gohy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 347 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S., Mishra, A., Yang, Q. et al. Data-driven search for promising intercalating ions and layered materials for metal-ion batteries. J Mater Sci 59, 932–949 (2024). https://doi.org/10.1007/s10853-023-09215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09215-7

Navigation