Skip to main content
Log in

NiCo2S4 nanosheet/Co9S8 hollow nanoparticle derived from MOF hierarchical core/shell electrode material for supercapacitor applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchically engineered three-dimensional (3D) nanostructures are interesting materials for supercapacitors application due to their excellent accessible active sites, and enhanced mass transport and diffusion. However, the design of robust 3D hierarchical core/shell nanostructures with good electrical conductivity and large accessible active site is still challenging. Herein, a 3D honeycomb-like NiCo2S4 nanosheet/Co9S8 hollow derived from metal–organic framework (MOF) hierarchical core/shell electrode material for supercapacitor application is reported. The synthesized 3D hierarchical core/shell structure endowed open diffusion channels and good active sites. This hierarchical core/shell structure exhibits a high areal-specific capacitance of 13.04 F cm−2 at current density of 10 mA cm−2; excellent rate performance of 77% as current density increased from 5 to 80 mA cm−2; and an excellent cycle stability of 94% after 6000 cycles of charge–discharge. Furthermore, the asymmetric electrode device made of NF/NCS/HCS//rGO showed an excellent energy density of 36.9 Wh kg−1 at a power density of 800 W kg−1. Such impressive results suggest promising applications of MOF-derived hierarchical structures for design of advanced energy storage devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All necessary data are included in the manuscript.

References

  1. Steven C, Yi C, Nian L (2017) The path towards sustainable energy. Nat Mater 16:16–22

    Article  Google Scholar 

  2. Yang Z et al (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  3. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin?: Perspectives. Science 343:1210–1211. https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  5. Conway BE (1999) Electrochemical Supercapacitors: Scientifi c Fundamentals and Technological. Kluwer Academic/Plenum Publisher

    Book  Google Scholar 

  6. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  7. Olabi AG, Abbas Q, Al Makky A, Abdelkareem MA (2022) Supercapacitors as next generation energy storage devices: properties and applications. Energy 248:123617

    Article  CAS  Google Scholar 

  8. Burke A (2000) Ultracapacitors-why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  9. Raza W et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  10. Wang F et al (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854

    Article  CAS  Google Scholar 

  11. Yonggang W, Yanfang S, Yongyao X (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950. https://doi.org/10.1039/c5cs00580a

    Article  CAS  Google Scholar 

  12. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  13. Liu Y, Zhou G, Liu K, Cui Y (2017) Design of complex nanomaterials for energy storage: past success and future opportunity. Acc Chem Res 50:2895–2905

    Article  CAS  Google Scholar 

  14. Salanne M et al (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070

    Article  CAS  Google Scholar 

  15. Choi C et al (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19. https://doi.org/10.1038/s41578-019-0142-z

    Article  Google Scholar 

  16. Wang X, Song S, Zhang H (2020) A redox interaction-engaged strategy for multicomponent nanomaterials. Chem Soc Rev 49:736–764. https://doi.org/10.1039/c9cs00379g

    Article  CAS  Google Scholar 

  17. Vinodh R et al (2020) A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. J Energy Storage 32:101831

    Article  Google Scholar 

  18. Zhai Z et al (2022) A review of carbon materials for supercapacitors. Mater Des 221:111017

    Article  CAS  Google Scholar 

  19. Cuia M, Meng X (2020) Overview of transition metal-based composite materials for supercapacitor electrodes. Nanoscale Adv. 2:5516–5528

    Article  Google Scholar 

  20. Rehman J et al (2022) Engineering of transition metal sulfide nanostructures as efficient electrodes for high-performance supercapacitors. ACS Appl Energy Mater 5:6481–6498

    Article  CAS  Google Scholar 

  21. Kandasamy M, Sahoo S, Nayak SK, Chakraborty B, Rout CS (2021) Recent advances in engineered metal oxide nanostructures for supercapacitor applications: experimental and theoretical aspects. J Mater Chem A 9:17643–17700

    Article  CAS  Google Scholar 

  22. Zhao Y et al (2019) Versatile zero- to three-dimensional carbon for electrochemical energy storage. Carbon Energy 3:895–915

    Article  Google Scholar 

  23. Ren J et al (2020) Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2:176–202

    Article  CAS  Google Scholar 

  24. Rui X, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6:9889–9924

    Article  CAS  Google Scholar 

  25. Liu Y et al (2017) Molecular design of mesoporous NiCo2O4 and NiCo2S4 with sub-micrometer-polyhedron architectures for efficient pseudocapacitive energy storage. Adv Funct Mater 27:1701229

    Article  Google Scholar 

  26. Chen H et al (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  CAS  Google Scholar 

  27. Xia C, Li P, Gandi AN, Schwingenschlögl U, Alshareef HN (2015) Is NiCo2S4 really a semiconductor? Chem Mater 27:6482–6485

    Article  CAS  Google Scholar 

  28. Gao Y, Zhao L (2020) Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chem Eng J 430:132745

    Article  Google Scholar 

  29. Zhang D et al (2022) Application of morphology and phase design of dealloying method in supercapacitor. J Alloys Compds 927:166974

    Article  CAS  Google Scholar 

  30. Sun H et al (2022) Hierarchical porous carbon nanofibers with enhanced capacitive behavior as a flexible self-supporting anode for boosting potassium storage. J Power Sources 523:231043

    Article  CAS  Google Scholar 

  31. Zhang H, Wang Y, Chen C, Wu X (2022) Metal-organic frameworks derived transition metal phosphide/carbon for high performance asymmetric supercapacitor. J Energy Storage 55:105623

    Article  Google Scholar 

  32. Xie Y et al (2021) MOF-derived bifunctional Co0.85Se nanoparticles embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium–sulfur batteries. Nano Lett 21:8579–8586

    Article  CAS  Google Scholar 

  33. Xiao Su et al (2022) Porous carbon-confined CoxSy nanoparticles derived from ZIF-67 for boosting lithium-ion storage. RSC Adv 12:939–946

    Article  CAS  Google Scholar 

  34. Meng F et al (2013) Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J Mater Chem A 1:7235–7241

    Article  CAS  Google Scholar 

  35. Lokhande PE et al (2022) The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord Chem Rev 473:214771

    Article  CAS  Google Scholar 

  36. Huang L et al (2013) Nickel−cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139. https://doi.org/10.1021/nl401086t

    Article  CAS  Google Scholar 

  37. Dingshan Yu et al (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562

    Article  Google Scholar 

  38. Khomenko V, Raymundo-Pinero E, Eguin FB (2006) Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J Power Sources 153:183–190

    Article  CAS  Google Scholar 

  39. Yin Y, Erdonmez CK, Cabot A, Hughses S, Alivisatos AP (2006) Colloidal synthesis of hollow cobalt sulfide nanocrystals. Adv Funct Mater 16:1389–1399

    Article  CAS  Google Scholar 

  40. Jin J et al (2019) Directly anchoring 2D NiCo metal–organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries. J Mater Chem A 7:783–790. https://doi.org/10.1039/c8ta09327j

    Article  CAS  Google Scholar 

  41. Kumar R et al (2019) Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Compos B Eng 168:66–76. https://doi.org/10.1016/j.compositesb.2018.12.047

    Article  CAS  Google Scholar 

  42. Hong J, Park S-J, Kim S (2019) Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim Acta 311:62–71. https://doi.org/10.1016/j.electacta.2019.04.121

    Article  CAS  Google Scholar 

  43. Wang X et al (2019) Solvothermal synthesis of flower-string-like NiCo-MOF/MWCNT composites as a high-performance supercapacitor electrode material. J Solid State Chem 277:575–586. https://doi.org/10.1016/j.jssc.2019.07.019

    Article  CAS  Google Scholar 

  44. Guo X, Xing T, Lou Y, Chen J (2016) Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J Solid State Chem 235:107–112. https://doi.org/10.1016/j.jssc.2015.12.021

    Article  CAS  Google Scholar 

  45. Patil U et al (2015) Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7:6999–7021. https://doi.org/10.1039/c5nr01135c

    Article  CAS  Google Scholar 

  46. Yang J et al (2016) Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 9:1299–1307. https://doi.org/10.1039/c5ee03633j

    Article  CAS  Google Scholar 

  47. Zhang X et al (2016) N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 30:93–102

    Article  CAS  Google Scholar 

  48. Wang Z, Chen T, Shi R, Zhang Y (2018) Core-shell structured MnCo2O4@NiMoO4 composite supported on Ni foam as a supercapacitor electrode for electrochemical energy storage. ChemPlusChem 84:69–77. https://doi.org/10.1002/cplu.201800549

    Article  CAS  Google Scholar 

  49. Huang Y et al (2019) Hierarchical FeCo2S4@FeNi2S4 core/shell nanostructures on Ni foam for high performance supercapacitors. Chem Eur J 25:14117–14122. https://doi.org/10.1002/chem.201902868

    Article  CAS  Google Scholar 

  50. Cheng Q et al (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624. https://doi.org/10.1039/c1cp21910c

    Article  CAS  Google Scholar 

  51. Lu X, Bai Y, Wang R, Sun J (2016) A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. J Mater Chem A 4:18164–18173. https://doi.org/10.1039/c6ta08233e

    Article  CAS  Google Scholar 

  52. Zou R et al (2015) Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater 7:e195–e195. https://doi.org/10.1038/am.2015.63

    Article  CAS  Google Scholar 

  53. Ju Z et al (2022) Vertically assembled nanosheet networks for high-density thick battery electrodes. PNAS 119:e2212777119

    Article  CAS  Google Scholar 

  54. Luo Y et al (2021) Rationally designed yolk–shell Co9S8–Co1−xS hollow spheres for advanced sodium-ion storage. J Mater Chem A 9:23537–23544

    Article  CAS  Google Scholar 

  55. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639

    Article  CAS  Google Scholar 

  56. Mathis TS et al (2019) Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater 9:1902007

    Article  CAS  Google Scholar 

  57. Kötz R, Carlen M (1999) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  58. Yu Z et al (2022) Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes. J Energy Storage 55:105486

    Article  Google Scholar 

  59. Sun MY et al (2022) Facile design and synthesis of a nickel disulfide/zeolitic imidazolate framework-67 composite material with a robust cladding structure for highefficiency supercapacitors. RSC Adv 12:23912–23921

    Article  CAS  Google Scholar 

  60. Yu Z, Zhang N, Li G, Ma L, Li T, Tong Z, Wang K (2022) Funnel-shaped hierarchical NiMoO4@Co3S4 core-shell nanostructure for enhanced supercapacitor performance. J Energy Storage 51:104511

    Article  Google Scholar 

  61. Zhang Z et al (2022) Construction of hierarchical NiCoSe@CoS core–shell nanotube arrays for high-performance hybrid supercapacitor. J Alloy Compd 919:165824

    Article  CAS  Google Scholar 

  62. Xie Z et al (2021) Synthesis of hierarchical Ni3S2@NiMoO4 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors. J Energy Storage 44:103459

    Article  Google Scholar 

  63. Kumar S, Weng P-H, Fu Y-P (2022) Core-shell-structured CuO@Ni-MOF: bifunctional electrode toward battery-type supercapacitors and oxygen evolution reaction. Mater Today Chem 26:101159

    Article  CAS  Google Scholar 

  64. Liu D et al (2022) Co(OH)F@CoP/CC core-shell nanoarrays for high-performance supercapacitors. J Energy Storage 55:105417

    Article  Google Scholar 

  65. Tavakoli F, Rezaei B, Taghipour Jahromi AR, Ensafi AA (2019) Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application. ACS Appl Mater Interfaces 12:418–427. https://doi.org/10.1021/acsami.9b12805

    Article  CAS  Google Scholar 

  66. Miao Y et al (2019) Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes. Adv Mater Interfaces 7:1901618

    Article  Google Scholar 

  67. Wang SC, Xiong D, Chen C, Gu M, Yi FY (2020) The controlled fabrication of hierarchical CoS2@NiS2 core-shell nanocubes by utilizing prussian blue analogue for enhanced capacitive energy storage performance. J Power Sources 450:227712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the financial support of this work from China Post-doctoral Science Foundation (Grant No. 2018M633511). We are thankful to Dire Dawa University for financial support during writing and editing of this manuscript. Additionally, Xi’an Jiaotong University Central Laboratory for some of the experimental tests.

Funding

We are thankful for the financial support of this work by China Post-doctoral Science Foundation (Grant No. 2018M633511).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception, experimental design, and manuscript composition. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Girma Beka Lemu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

Not applicable; the research is not on human or animal tissue.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemu, G.B., Liu, W. & Li, X. NiCo2S4 nanosheet/Co9S8 hollow nanoparticle derived from MOF hierarchical core/shell electrode material for supercapacitor applications. J Mater Sci 59, 188–205 (2024). https://doi.org/10.1007/s10853-023-09187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09187-8

Navigation