Skip to main content
Log in

Silicon carbide synthesis investigation in an electrothermal fluidized bed

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work is devoted to the computational study of the efficiency of the SIC synthesis process in an electrothermal fluidized bed at different operating temperatures of the process and different loading options in the reaction volume of the charge components. The chemical reactions volatile products entrainment effect at the silicon carbide yield is shown. It is noted that the properties of the reacting surface of carbon-containing particles mainly determine the synthesis time, but not the amount of SIC formed. Analysis of the calculation results allowed us to draw an important conclusion about the fundamental effect on the synthesis efficiency of the ratio of the number of carbon-containing particles directly involved in the SIC formation reaction to the number of carbon-containing particles associated only with evaporating SiO2 particles. The calculated yield of SiC is compared with the results of existing experiments to study the formation of SiC in an electrothermal reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data and code availability

Not Applicable.

References

  1. Ermekova ZHS, Mansurov ZA, Abdulkarimova RG, Mukas’yan AS (2010) Karbid kremniya: sposoby polucheniya i primenenie (obzor). Gorenie i plazmohimiya 81:32–54

    Google Scholar 

  2. Grashchenkov DV, CHursova LV (2012) Strategiya razvitiya kompozicionnyh i funkcional'nyh materialov. Aviacionnye materialy i tekhnologii, p 231–242

  3. Qing Z, Dawei L, Dongpeng H, Wenting Y, Shuo L, Qiguang Z, Ziqiang C, Haifeng W (2022) Design and characterization of metallic glass/graphene multilayer with excellent nanowear properties. Friction 10(11):1913–1926

    Article  Google Scholar 

  4. Ren Y, Huang Z, Wang Y, Zhou Q, Yang T, Li Q, Jia Q, Wang H (2023) Friction-induced rapid amorphization in a wear-resistant (CoCrNi)88Mo12 dual-phase medi-um-entropy alloy at cryogenic temperature. Compos B 263:110833

    Article  CAS  Google Scholar 

  5. Wang W, Hua D, Luo D, Zhou Q, Li S, Shi J, Wang H (2022) Mo-lecular dynamics simulation of deformation mechanism of CoCrNi medium entropy alloy during nanoscratching. Comput Mater Sci 203:111085

    Article  CAS  Google Scholar 

  6. KurganovaLopatina YAYA (2015) Analiz raspredeleniya armiruyushchej fazy v alyumomat-richnyh kompozicionnyh materialah. Materialovedenie i novye materialy 4:42–28

    Google Scholar 

  7. Sannikova SN, Lapin PG, Lukin ES, Popova NA, Shajdullina LT (2012) Kom-pozicionnyj ke-ramicheskij material v sisteme SiC-Al2O3 dlya vysokotemperaturnogo pri-meneniya v okislitel'nyh sredah. Patent RF, No 2498957

  8. Selyutin GE, Gavrilov YY, Popova OE, Voskresenskaya EN, Poluboyarov VA, Vo-roshilov VA, Turushev AV (2008) Kompozicionnyj iznosostojkij material na osnove sverhvysokomole-kulyarnogo polietilena (SVMPE). Patent RF No 2381242

  9. Lukin ES, Popova NA, Kurikova SE, Maevskij VN, Prilepskij VN, Shchelin VS, Tumin AM (1992) Shihta dlya polucheniya poristogo termostojkogo keramicheskogo materiala. Patent RF No 2031886

  10. Lukin ES, Popova NA, Kurikova SE, Maevskij VN (1992) Shihta dlya polucheniya poristogo ke-ramicheskogo materiala. Patent RF No 2033987

  11. Kuznecov NT, Sevast'yanov VG, Simonenko EP, Simonenko NP (2016) Sposob polucheniya kompozicionnogo poroshka MB2-SiC, гдe M=Zr, Hf. Patent RF No 2615692

  12. Denisov VA, Goncharova YA, Kuz'min AM, Slavkina VE, Alekhina RA (2022) Kompozi-cionnyj iznosostojkij material. Patent RF No 2784232

  13. Zhitnyuk SV, Medvedev PN (2023) Issledovanie mikrostruktury i fazovogo sostava metal-licheskogo kompozicionnogo materiala sistemy Al–Si–Mg, modificirovannogo chasticami karbida kremniya putem mekhanicheskogo legirovaniya. Trudy VIAM 1(119):97–106

    Google Scholar 

  14. Kuzevanov VS, Zakozhurnikov SS, Zakozhurnikova GS, Garyaev AB (2017) Modeli processov i raschet temperaturnogo polya v pechi soprotivleniya dlya proizvodstva karbida kremniya. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta 4:21–29. https://doi.org/10.17588/2072-2672.2017.4.021-029

    Article  Google Scholar 

  15. Gupta GS, Vasanth KP, Rudolph VR, Gupta M (2001) Heat-transfer model for the acheson process. Metallurgical and materials transactions 32A:1301–1308

    Article  CAS  Google Scholar 

  16. KM Soe (2019) Kompozicionnaya keramika na osnove karbida kremniya s evtekticheskimi dobavkami v sistemah Al2O3-TiO2-MnO, Al2O3-MnO-SiO2, MgO-SiO2, Al2O3(MgO)-MgO-SiO2. Dissertaciya Moskva

  17. Kuzevanov VS, Zakozhurnikova GS, Zakozhurnikov SS (2020) Peculiarities of heat and mass transfer in porous moistened mediums at high thermal loads. Solid State Phenom 299:14–19. https://doi.org/10.4028/www.scientific.net/SSP.299.14

    Article  Google Scholar 

  18. Kuzevanov VS, Garyaev AB, Zakozhurnikova GS, Zakozhurnikov SS (2017) The calculating study of the moisture transfer influence at the temperature field in a porous wet medium with internal heat sources. J Phys Conf Ser 891:012114. https://doi.org/10.1088/1742-6596/891/1/012114

    Article  CAS  Google Scholar 

  19. Kuzevanov VS, Zakozhurnikova GS, Zakozhurnikov SS (2015) Model’ teplomassoperenosa v pechah pri proizvodstve karbida kremniya. Mezhdunarodnyj nauchnyj zhurnal Al’ternativ-naya energetika i ekologiya 7(171):75–81. https://doi.org/10.15518/isjaee.2015.07.006

    Article  CAS  Google Scholar 

  20. Garyaev AB, Kuzevanov VS, Zakozhurnikov SS (2016) Model’ osadki shihty pri proizvodstve karbida kremniya. Promyshlennaya energetika 9:27–31

    Google Scholar 

  21. Kuzevanov VS, Zakozhurnikov SS, Garyaev AB (2015) Optimizaciya processa plavki karbida kremniya s cel’yu povysheniya ee proizvoditel’nosti i snizheniya raskhoda elektroenergii. Promyshlennaya energetika 6:29–33

    Google Scholar 

  22. Burylin MYU, Pupyshev AA, Obogrelova SAI (2011) Termodinamicheskoe modeliro-vanie termohimicheskih processov v grafitovoj pechi elektrotermicheskogo atomizatora pri formirovanii permanentnogo modifikatora na karbonizovannoj osnove i atomno-absorbcionnom opredelenii legkoletuchih elementov. Analitika i kontrol’ 15(4):391–400

    Google Scholar 

  23. Skuratov AP, Skuratova SD (2010) The compute research of mode parameters influence on the furnace heat work in Vanyukovs smelting energotechnological complex. J Sib Fed Univ. Eng Technol 3(4):406–410

    Google Scholar 

  24. Borodulya VA, Vinogradov LM, Greben'kov AZH, Mihajlov AA (2017) Sposob i ustanovka dlya polucheniya karbida kremniya. Evrazijskij patent No 027539

  25. Eleev YA, Bogoyavlenskaya YS, Glukhan EN, Golovkov VF, Afanasiev VV (2021) Development of an encapsulation process for toxic waste and hazardous chemicals in a fluidized bed. Fine Chem Technol 16(3):199–212. https://doi.org/10.32362/2410-6593-2021-16-3-199-212

    Article  CAS  Google Scholar 

  26. Alekseeva TI, Galevskij GV, Rudneva VV, Galevskij SG (2017) Tekhnologicheskie resheniya v proizvodstve karbida cirkoniya: analiz, ocenka sostoyaniya i perspektiv. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta 23(1):56–270

    Google Scholar 

  27. Borodulya VA, Vinogradov LM, Greben'kov AZH, Mihajlov AA, Sidorovich AM (2013) Karbidotermicheskoe vosstanovlenie SiO2 i obrazovanie karbida kremniya v elektrotermi-cheskom kipyashchem sloe. Teplo- i massoperenos-2012, Minsk, p 121–127

  28. Borodulya VA, Vinogradov LM, Greben’kov AZH, Mihajlov AA (2015) Sintez karbida kremniya v elektrotermicheskom reaktore s kipyashchim sloem uglerodnyh chastic. Gorenie i plazmohimiya 13(2):92–102

    CAS  Google Scholar 

  29. Borodulya VA, Greben'kov AZH, Mihajlov AA (2019) Osobennosti obrazovaniya razlichnyh strukturnyh modifikacij karbida kremniya pri ego karbotermicheskom sinteze v reaktore el-ektrotermicheskogo kipyashchego sloya /Teplo– i massoperenos, 2019-Minsk, p 64–72

  30. Kuzevanov VS, Garyaev AB, Zakozhurnikov SS, Zakozhurnikova GS (2019) Model of continuous production of fine silicon carbid. In: IOP conference series: materials science and engineering International Workshop "Advanced Technologies in Material Science, Mechanical and Automation Engineering-MIP: Engineering-2019", Krasnoyarsk, p 32106. https://doi.org/10.1088/1757-899X/537/3/032106.

  31. Kuzevanov VS, Zakozhurnikov SS, Zakozhurnikova GS (2021) Model and results of a study of the synthesis of finely dispersed silicon carbide in an electro-thermal reactor. Solid State Phenom 316:147–152. https://doi.org/10.4028/www.scientific.net/ssp.316.147

    Article  Google Scholar 

  32. Kuzevanov VS, Zakozhurnikov SS, Zakozhurnikova GS, Garyaev AB (2020) Finely dispersed silicon carbide synthesis model in the electrothermal reactor with periodic batch loading. In: Journal of physics: conference series. 3rd conference problems of thermal physics and power engineering-hydrodynamics and heat and mass transfer, p 022054. https://doi.org/10.1088/1742-6596/1683/2/022054.

  33. Ni F (2015) Kinetics of the reaction between quartz and silicon carbide in different gas atmospheres Light Metals, Silicon and Ferroalloy Production Supervisor: Merete Tangstad, IMTE. Department of Materials Science and Engineering Submission, p 90

  34. Li X, Zhang G, Tronstad R, Ostrovski O (2016) Reduction of quartz to silicon monoxide by methane-hydrogen mixtures. Metall Mater Trans B 47:2197

    Article  CAS  Google Scholar 

  35. Losilevskiy I, Gryaznov V, Solovev A (2014) Properties of high-temperature phase diagram and critical point parameters in silica. High Temp-High Press 43(2–3):227–241

    Google Scholar 

  36. Champagnon B, Martinez V, Martinet C, Le Parc R, Levelut C (2007) Density and density fluctuations anomalies of SiO2 glass: comparison and light scattering study. Philos Mag 87(3–5):691–695

    Article  CAS  Google Scholar 

  37. Bukur DB, Amundson NR (1981) Fluidized-bed char combustion diffusion limited models. Chem Eng Sci 36:1239–1256

    Article  CAS  Google Scholar 

  38. Barabanov NN, Zemskova VT, Mitrofanov AD, Ermolaeva EV (1998) Matematicheskoe mo-delirovanie processa karbidizacii sintaktnyh penoplastov. Himiya i himicheskaya tekhnolo-giya 41(5):32–34

    CAS  Google Scholar 

Download references

Acknowledgements

Not Applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Zakozhurnikov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that they have no conflict of interest and no living organisms were harmed.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzevanov, V.S., Zakozhurnikov, S.S. & Zakozhurnikova, G.S. Silicon carbide synthesis investigation in an electrothermal fluidized bed. J Mater Sci 58, 16742–16752 (2023). https://doi.org/10.1007/s10853-023-09071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09071-5

Navigation