Skip to main content
Log in

Effective removal of Cr(VI) from solution by three-dimensional polyaniline loaded composite porous hydrogel

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is still challenging to avoid polyaniline agglomeration and fabricate polyaniline-based adsorbents with stable structure, excellent adsorption performance. Herein, we synthesized montmorillonite/humic acid/polyvinyl alcohol@polyaniline (MMT/HA/PVA@PANI) composite porous hydrogel adsorbent by Pickering emulsion template-in situ chemical oxidative polymerization, and the enhancement effect of this design idea on the adsorption performance of PANI was studied with heavy metal ion hexavalent chromium Cr(VI) as the target adsorbate. The in-situ polymerization of aniline at the Pickering emulsion interface and the unique three-dimensional network structure of the hydrogel act as an effective “confinement” for the growth of the polyaniline. The porous structure of hydrogel can be used as water channel, which can accelerate the combination of adsorbate and adsorption site, and significantly improve the adsorption capacity and adsorption rate. Compared with the pure PANI (43.48 mg g−1 PANI), MMT/HA/PVA@PANI (1753.60 mg g−1 PANI) obviously had significantly higher removal efficiency, which increased the removal efficiency of Cr(VI) by about 40 times. Adsorption experiments suggest that solution pH, adsorbent dosage, contact time and initial concentration all have certain effects on adsorption performance. According to the FESEM, EDX, FTIR and XPS analysis of the materials before and after adsorption, the removal of Cr(VI) is mainly enhanced by ion exchange, electrostatic attraction and chemical reduction. In conclusion, MMT/HA/PVA@PANI adsorbent has novel design, good adsorption performance and strong stability, and it has great development prospects in removing heavy metal ions from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Stejskal J (2022) Recent advances in the removal of organic dyes from aqueous media with conducting polymers, polyaniline and polypyrrole, and their composites. Polymers (Basel) 14(19):4243. https://doi.org/10.3390/polym14194243

    Article  CAS  Google Scholar 

  2. Stejskal J (2019) Conducting polymers are not just conducting: a perspective for emerging technology. Polym Int 69(8):662–664. https://doi.org/10.1002/pi.5947

    Article  CAS  Google Scholar 

  3. Senguttuvan S, Senthilkumar P, Janaki V, Kamala-Kannan S (2021) Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters-a review. Chemosphere 267:129201. https://doi.org/10.1016/j.chemosphere.2020.129201

    Article  CAS  Google Scholar 

  4. Wani AA, Khan AM, Manea YK, Salem MAS, Shahadat M (2021) Selective adsorption and ultrafast fluorescent detection of Cr(VI) in wastewater using neodymium doped polyaniline supported layered double hydroxide nanocomposite. J Hazard Mater 416:125754. https://doi.org/10.1016/j.jhazmat.2021.125754

    Article  CAS  Google Scholar 

  5. Chen ZS, Wei BB, Yang SY, Li Q, Liu L, Yu SJ, Wen T, Hu BW, Chen JR, Wang XK (2019) Synthesis of PANI/AlOOH composite for Cr(VI) adsorption and reduction from aqueous solutions. ChemistrySelect 4(8):2352–2362. https://doi.org/10.1002/slct.201803898

    Article  CAS  Google Scholar 

  6. Javadian H, Ghaemy M, Taghavi M (2013) Adsorption kinetics, isotherm, and thermodynamics of Hg2+ to polyaniline/hexagonal mesoporous silica nanocomposite in water/ wastewater. J Mater Sci 49(1):232–242. https://doi.org/10.1007/s10853-013-7697-7

    Article  CAS  Google Scholar 

  7. Muhammad A, Shah A, Bilal S (2019) Comparative study of the adsorption of acid blue 40 on polyaniline, magnetic oxide and their composites: synthesis. Charact Appl Mater (Basel) 12(18):2854. https://doi.org/10.3390/ma12182854

    Article  CAS  Google Scholar 

  8. Kuznetsova TS, Burakov AE, Burakova IV, Pasko TV, Dyachkova TP, Mkrtchyan ES, Memetova AE, Ananyeva OA, Shigabaeva GN, Galunin EV (2023) Preparation of a polyaniline-modified hybrid graphene aerogel-like nanocomposite for efficient adsorption of heavy metal ions from aquatic media. Polymers (Basel) 15(5):1101. https://doi.org/10.3390/polym15051101

    Article  CAS  Google Scholar 

  9. Zaghlol S, Amer WA, Shaaban MH, Ayad MM, Bober P, Stejskal J (2020) Conducting macroporous polyaniline/poly(vinyl alcohol) aerogels for the removal of chromium(VI) from aqueous media. Chem Pap 74(9):3183–3193. https://doi.org/10.1007/s11696-020-01151-z

    Article  CAS  Google Scholar 

  10. Song XF, Qin JT, Li TT, Liu G, Xia XX, Li YS, Liu Y (2019) Efficient construction and enriched selective adsorption-photocatalytic activity of PVA/PANI/TiO2 recyclable hydrogel by electron beam radiation. J Appl Polym Sci 137(13):48516. https://doi.org/10.1002/app.48516

    Article  CAS  Google Scholar 

  11. Xiao ZX, Zhang LJ, Wu L, Chen D (2019) Adsorptive removal of Cu(II) from aqueous solutions using a novel macroporous bead adsorbent based on poly(vinyl alcohol)/sodium alginate/KMnO4 modified biochar. J Taiwan Inst Chem E 102:110–117. https://doi.org/10.1016/j.jtice.2019.05.010

    Article  CAS  Google Scholar 

  12. Song W, Tong TJ, Xu J, Wu N, Ren LL, Li M, Tong J (2022) Preparation and application of green chitosan/ploy(vinyl alcohol) porous microspheres for the removal of hexavalent chromium. Mater Sci Eng B 284:115922. https://doi.org/10.1016/j.mseb.2022.115922

    Article  CAS  Google Scholar 

  13. Wang JJ, Chi H, Zhou AA, Zheng RH, Bai H, Zhang TY (2020) Facile synthesis of multi-functional elastic polyaniline/polyvinyl alcohol composite gels by a solution assembly method. RSC Adv 10(37):22019–22026. https://doi.org/10.1039/d0ra02238a

    Article  CAS  Google Scholar 

  14. Pickering SU (1907) CXCVI.—Emulsions. J Chem Soc Trans 91:2001–2021. https://doi.org/10.1039/ct9079102001

    Article  Google Scholar 

  15. Fu EY, Chen KM, Wang QL, Zhang Y, Yan NN, Liu L (2021) Formation and stabilization of pickering emulsions using salt-sensitive core-shell cationic nanoparticles. J Mater Sci 56(25):14019–14034. https://doi.org/10.1007/s10853-021-06208-2

    Article  CAS  Google Scholar 

  16. Mi X, Wang XR, Gao CJ, Su WJ, Zhang YY, Tan XY, Gao JP, Liu Y (2019) Modified reduced graphene oxide as stabilizer for pickering w/o emulsions. J Mater Sci 55(5):1946–1958. https://doi.org/10.1007/s10853-019-04066-7

    Article  CAS  Google Scholar 

  17. Sun Z, Yan XX, Xiao Y, Hu LJ, Eggersdorfer M, Chen D, Yang ZZ, Weitz DA (2022) Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology 64:153–163. https://doi.org/10.1016/j.partic.2021.06.004

    Article  CAS  Google Scholar 

  18. Lu TT, Gou H, Rao HH, Zhao GH (2021) Recent progress in nanoclay-based Pickering emulsion and applications. J Environ Chem Eng 9(5):105941. https://doi.org/10.1016/j.jece.2021.105941

    Article  CAS  Google Scholar 

  19. Lyu W, Li JQ, Trchova M, Wang G, Liao YZ, Bober P, Stejskal J (2022) Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. J Hazard Mater 435:129004. https://doi.org/10.1016/j.jhazmat.2022.129004

    Article  CAS  Google Scholar 

  20. Zhang B, Zhang TL, Zhang ZD, Xie MY (2019) Hydrothermal synthesis of a graphene/ magnetite/montmorillonite nanocomposite and its ultrasonically assisted methylene blue adsorption. J Mater Sci 54(16):11037–11055. https://doi.org/10.1007/s10853-019-03659-6

    Article  CAS  Google Scholar 

  21. Shin JH, Park JW, Kim HJ (2019) Clay-polystyrene nanocomposite from pickering emulsion polymerization stabilized by vinylsilane-functionalized montmorillonite platelets. Appl Clay Sci 182:105288. https://doi.org/10.1016/j.clay.2019.105288

    Article  CAS  Google Scholar 

  22. Yang ZY, Wang WX, Tai XM, Wang GY (2019) Preparation of modified montmorillonite with different quaternary ammonium salts and application in pickering emulsion. New J Chem 43(29):11543–11548. https://doi.org/10.1039/c9nj01606f

    Article  CAS  Google Scholar 

  23. Li YF, Wen J, Xue ZZ, Yin XY, Yuan L, Yang CL (2022) Removal of Cr(VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads—extension from water treatment to soil remediation. J Hazard Mater 426:127809. https://doi.org/10.1016/j.jhazmat.2021.127809

    Article  CAS  Google Scholar 

  24. Rajendran S, Priya AK, Senthil Kumar P, Hoang TKA, Sekar K, Chong KY, Khoo KS, Ng HS, Show PL (2022) A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-a review. Chemosphere 303(Pt 2):135146. https://doi.org/10.1016/j.chemosphere.2022.135146

    Article  CAS  Google Scholar 

  25. Jin LF, Huang L, Ren LL, He YJ, Tang JW, Wang S, Yang WC, Wang HY, Chai LY (2018) Preparation of stable and high-efficient poly(m-phenylenediamine)/reduced graphene oxide composites for hexavalent chromium removal. J Mater Sci 54(1):383–395. https://doi.org/10.1007/s10853-018-2844-9

    Article  CAS  Google Scholar 

  26. Pakade VE, Tavengwa NT, Madikizela LM (2019) Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 9(45):26142–26164. https://doi.org/10.1039/c9ra05188k

    Article  CAS  Google Scholar 

  27. Mao W, Zhang Y, Luo JE, Chen LT, Guan YT (2022) Novel co-polymerization of polypyrrole/ polyaniline on ferrate modified biochar composites for the efficient adsorption of hexavalent chromium in water. Chemosphere 303(Pt3):135254. https://doi.org/10.1016/j.chemosphere.2022.135254

    Article  CAS  Google Scholar 

  28. Humpolicek P, Radaszkiewicz KA, Capakova Z, Pachernik J, Bober P, Kasparkova V, Rejmontova P, Lehocky M, Ponizil P, Stejskal J (2018) Polyaniline cryogels: biocompatibility of novel conducting macroporous material. Sci Rep 8(1):135–146. https://doi.org/10.1038/s41598-017-18290-1

    Article  CAS  Google Scholar 

  29. Hosseini H, Mousavi SM (2021) Bacterial cellulose/polyaniline nanocomposite aerogels as novel bioadsorbents for removal of hexavalent chromium: experimental and simulation study. J Clean Prod 278:123817. https://doi.org/10.1016/j.jclepro.2020.123817

    Article  CAS  Google Scholar 

  30. Chen J, Hong XQ, Zhao Y, Xia YY, Li DK, Zhang QF (2013) Preparation of flake-like polyaniline/montmorillonite nanocomposites and their application for removal of Cr(VI) ions in aqueous solution. J Mater Sci 48(21):7708–7717. https://doi.org/10.1007/s10853-013-7591-3

    Article  CAS  Google Scholar 

  31. Riahi Samani M, Ebrahimbabaie P, Vafaei Molamahmood H (2016) Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol. Water Sci Technol 74(10):2305–2313. https://doi.org/10.2166/wst.2016.412

    Article  CAS  Google Scholar 

  32. Li JC, Li M, Wang S, Yang X, Liu F, Liu X (2020) Key role of pore size in Cr(VI) removal by the composites of 3-dimentional mesoporous silica nanospheres wrapped with polyaniline. Sci Total Environ 729:139009. https://doi.org/10.1016/j.scitotenv.2020.139009

    Article  CAS  Google Scholar 

  33. Han X, Liu YL, Xiong LJ, Huang HB, Zhang Q, Li L, Yu XH, Wei L (2019) Facile assembly of polyaniline/graphene oxide composite hydrogels as adsorbent for Cr(VI) removal. Polym Compos 40(S2):E1777–E1785. https://doi.org/10.1002/pc.25161

    Article  CAS  Google Scholar 

  34. Fan XX, Zhao BX, Ma JX, Wang N, Gao WQ, Gao YJ, Zhao YK, Liu LX (2022) Synthesis and characterization of magnetic organic montmorillonite: efficient adsorption of hexavalent chromium. Water Sci Technol 86(5):1135–1152. https://doi.org/10.2166/wst.2022.257

    Article  CAS  Google Scholar 

  35. Yu YR, Zhang G, Ye L (2019) Preparation and adsorption mechanism of polyvinyl alcohol/ graphene oxide-sodium alginate nanocomposite hydrogel with high Pb(II) adsorption capacity. J Appl Polym Sci 136(14):47318. https://doi.org/10.1002/app.47318

    Article  CAS  Google Scholar 

  36. Zhou TT, Liang QW, Zhou X, Luo HJ, Chen W (2021) Enhanced removal of toxic hexavalent chromium from aqueous solution by magnetic Zr-MOF@polypyrrole: performance and mechanism. Environ Sci Pollut Res Int 28(11):13084–13096. https://doi.org/10.1007/s11356-021-12341-x

    Article  CAS  Google Scholar 

  37. Li J, Yan LG, Yang YT, Zhang X, Zhu RX, Yu HQ (2019) Insight into the adsorption mechanisms of aqueous hexavalent chromium by EDTA intercalated layered double hydroxides: XRD, FTIR, XPS, and zeta potential studies. New J Chem 43(40):15915–15923. https://doi.org/10.1039/c9nj03479j

    Article  CAS  Google Scholar 

  38. Aarab N, Hsini A, Essekri A, Laabd M, Lakhmiri R, Albourine A (2020) Removal of an emerging pharmaceutical pollutant (metronidazole) using PPY-PANi copolymer: kinetics, equilibrium and DFT identification of adsorption mechanism. Groundw Sustain Dev 11:100416. https://doi.org/10.1016/j.gsd.2020.100416

    Article  Google Scholar 

  39. Yang DX, Li LF, Chen BL, Shi SX, Nie J, Ma GP (2019) Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 163:74–85. https://doi.org/10.1016/j.polymer.2018.12.046

    Article  CAS  Google Scholar 

  40. González-López ME, Laureano-Anzaldo CM, Pérez-Fonseca AA, Arellano M, Robledo-Ortíz JR (2020) Chemically modified polysaccharides for hexavalent chromium adsorption. Sep Purif Rev 50(4):333–362. https://doi.org/10.1080/15422119.2020.1783311

    Article  CAS  Google Scholar 

  41. Tshemesea SJ, Mlabaa TT, Tichapondwaa SM, Mhike W (2020) Removal of chromium (VI) from aqueous solution using exfoliated graphite/ polyaniline composite. Chem Eng trans 81:565–570. https://doi.org/10.3303/CET2081095

    Article  Google Scholar 

  42. Debnath MK, Rahman MA, Minami H, Rahman MM, Alam MA, Sharafat MK, Hossain MK, Ahmad H (2019) Single step modification of micrometer-sized polystyrene particles by electromagnetic polyaniline and sorption of chromium(VI) metal ions from water. J Appl Polym Sci 136(19):47524. https://doi.org/10.1002/app.47524

    Article  CAS  Google Scholar 

  43. Lai YX, Wang F, Zhang YM, Ou P, Wu PP, Fang QL, Chen Z, Li S (2019) UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water. Chem Eng J 378:122069. https://doi.org/10.1016/j.cej.2019.122069

    Article  CAS  Google Scholar 

  44. Bao CZ, Chen MX, Liu GR, Jin X, Huang Q (2018) Efficient adsorption/reduction of aqueous hexavalent chromium using oligoaniline hollow microspheres fabricated by a template-free method. J Chem Technol Biotechnol 93(4):1147–1158. https://doi.org/10.1002/jctb.5473

    Article  CAS  Google Scholar 

  45. Luo YW, Wu ZL, Guan QH, Chen SX, Wu DS (2022) Facile synthesis of magnetic porous carbon nanosheets as efficient As(III) adsorbent. Chem Pap 76(12):7295–7303. https://doi.org/10.1007/s11696-022-02410-x

    Article  CAS  Google Scholar 

  46. Hsini A, Naciri Y, Benafqir M, Ajmal Z, Aarab N, Laabd M, Navio JA, Puga F, Boukherroub R, Bakiz B, Albourine A (2021) Facile synthesis and characterization of a novel 1,2,4,5- benzene tetracarboxylic acid doped polyaniline@zinc phosphate nanocomposite for highly efficient removal of hazardous hexavalent chromium ions from water. J Colloid Interface Sci 585:560–573. https://doi.org/10.1016/j.jcis.2020.10.036

    Article  CAS  Google Scholar 

  47. Peng X, Yan ZC, Hu LH, Zhang RZ, Liu SJ, Wang AL, Yu XW, Chen L (2020) Adsorption behavior of hexavalent chromium in aqueous solution by polyvinylimidazole modified cellulose. Int J Biol Macromol 155:1184–1193. https://doi.org/10.1016/j.ijbiomac.2019.11.086

    Article  CAS  Google Scholar 

  48. Long FL, Niu CG, Tang N, Guo H, Li ZW, Yang YY, Lin LS (2021) Highly efficient removal of hexavalent chromium from aqueous solution by calcined Mg/Al-layered double hydroxides/polyaniline composites. Chem Eng J 404:127084. https://doi.org/10.1016/j.cej.2020.127084

    Article  CAS  Google Scholar 

  49. Das S, Chakraborty P, Ghosh R, Paul S, Mondal S, Panja A, Nandi AK (2017) Folic acid-polyaniline hybrid hydrogel for adsorption/reduction of chromium(VI) and selective adsorption of anionic dye from water. ACS Sustain Chem Eng 5(10):9325–9337. https://doi.org/10.1021/acssuschemeng.7b02342

    Article  CAS  Google Scholar 

  50. Hsini A, Benafqir M, Naciri Y, Laabd M, Bouziani A, Ez-Zahery M, Lakhmiri R, El Alem N, Albourine A (2021) Synthesis of an arginine-functionalized polyaniline@FeOOH composite with high removal performance of hexavalent chromium ions from water: adsorption behavior, regeneration and process capability studies. Colloids Surf A Physicochem Eng Aspects 617:126274. https://doi.org/10.1016/j.colsurfa.2021.126274

    Article  CAS  Google Scholar 

  51. Lei C, Wang CW, Chen WQ, He MH, Huang BB (2020) Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: removal efficacy and mechanisms. Sci Total Environ 733:139316. https://doi.org/10.1016/j.scitotenv.2020.139316

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by preparation of lignite humic acid-based magnetic composite microspheres and their adsorption properties for heavy metal ions, National Natural Science Foundation of China (21576001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XZ: process the data and write the manuscript. WZ: complete material preparation, data collection and analysis. JC: corresponding author. Directed, revised, and supplemented the manuscript. All authors commented on previous versions of the manuscript, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Conflict of interest

The authors state that they do not have any established competing financial interests or personal relationships that might seem to have affected the work reported in this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zou, W. & Chen, J. Effective removal of Cr(VI) from solution by three-dimensional polyaniline loaded composite porous hydrogel. J Mater Sci 58, 15396–15410 (2023). https://doi.org/10.1007/s10853-023-08987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08987-2

Navigation