Skip to main content
Log in

Engineering metalized surface of single hair via electroless Cu-plating strategy for self-supported nonenzymatic glucose sensor

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface engineering of human hair via electroless copper-plating process was successfully carried out as a self-supported electrochemical sensor for successful detection of glucose in human serum. Polydopamine (PDA) coating was first grafted on the surface of a single hair through oxidative self-polymerization of dopamine, and subsequently, the ultrathin metal layer composed of copper nanoparticles (CuNPs) on the hair surface was achieved using by the convenient electroless deposition process. The single hair@CuNPs composite with a uniformly dispersed conductive layer (8 μm in thickness) exhibited prominent electrocatalytic activity to glucose oxidation. The amperometric response of the self-supported nonenzymatic glucose sensor comprised two linear ranges (i.e., 0.002–5 mM and 5–35 mM), respectively, with a better detection limit of 1.62 μM and the best sensitivity of 110.98 μA−1 mM cm−2. As revealed by the finding, the surface engineering technique on single hair was confirmed as a simple and low-cost method for detecting glucose in human serum samples. The hair@CuNPs composite can be utilized as a promising potential in the next generation wearable and implantable bioelectronics application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Fig. 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Salek-Maghsoudi A, Vakhshiteh F, Torabi R, Hassani S, Ganjali MR, Norouzi P, Hosseini M, Abdollahi M (2018) Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron 99:122–135. https://doi.org/10.1016/j.bios.2017.07.047

    Article  CAS  Google Scholar 

  2. Rumpler M, Mader JK, Fischer JP, Thar R, Granger JM, Deliane F, Klimant I, Aberer F, Sinner F, Pieber TR, Hajnsek M (2017) First application of a transcutaneous optical single-port glucose monitoring device in patients with type 1 diabetes mellitus. Biosens Bioelectron 88:240–248. https://doi.org/10.1016/j.bios.2016.08.039

    Article  CAS  Google Scholar 

  3. Shabnam L, Faisal SN, Roy AK, Haque E, Minett AI, Gomes VG (2017) Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food. Food Chem 221:751–759. https://doi.org/10.1016/j.foodchem.2016.11.107

    Article  CAS  Google Scholar 

  4. Nam DJ, Kim Y, Yang EH, Lee HC, Ryoo J-H (2020) Relationship between urinary phthalate metabolites and diabetes: Korean National Environmental health Survey. Ann of Occup Environ Med 32:e34. https://doi.org/10.35371/aoem.2020.32.e34

    Article  Google Scholar 

  5. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  Google Scholar 

  6. Thome-Duret V, Aussedat B, Reach G, Gangnerau MN, Lemonnier F, Klein JC, Zhang Y, Hu Y, Wilson GS (1998) Continuous glucose monitoring in the free-moving rat. Metabolism 47:799–803. https://doi.org/10.1016/s0026-0495(98)90115-9

    Article  CAS  Google Scholar 

  7. Ward WK, Jansen LB, Anderson E, Reach G, Klein JC, Wilson GS (2002) A new amperometric glucose microsensor: in vitro and short-term in vivo evaluation. Biosens Bioelectron 17:181–189. https://doi.org/10.1016/s0956-5663(01)00268-8

    Article  CAS  Google Scholar 

  8. Hu J (2009) The evolution of commercialized glucose sensors in China. Biosens Bioelectron 24:1083–1089. https://doi.org/10.1016/j.bios.2008.08.051

    Article  CAS  Google Scholar 

  9. Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453. https://doi.org/10.1016/j.bios.2004.11.012

    Article  CAS  Google Scholar 

  10. Hwang D-W, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors-A review. Anal Chim Acta 1033:1–34. https://doi.org/10.1016/j.aca.2018.05.051

    Article  CAS  Google Scholar 

  11. Tsai T-W, Heckert G, Neves LF, Tan Y, Kao D-Y, Harrison RG, Resasco DE, Schmidtke DW (2009) Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal Chem 81:7917–7925. https://doi.org/10.1021/ac900650r

    Article  CAS  Google Scholar 

  12. Soomro RA, Akyuz OP, Ozturk R, Ibupoto ZH (2016) Highly sensitive non-enzymatic glucose sensing using gold nanocagesas as efficient electrode material. Sens Actuators B 233:230–236. https://doi.org/10.1016/j.snb.2016.04.065

    Article  CAS  Google Scholar 

  13. Wei C, Li X, Xiang W, Yu Z, Liu Q (2020) MOF derived seaweed-like CoCu oxides nanorod arrays for electrochemical non-enzymatic glucose sensing with ultrahigh sensitivity. Sens Actuators B 324:128773. https://doi.org/10.1016/j.snb.2020.128773

    Article  CAS  Google Scholar 

  14. Ahmed J, Faisal M, Alsareii SA, Harraz FA (2022) Highly sensitive and selective non-enzymatic uric acid electrochemical sensor based on novel polypyrrole-carbon black-Co3O4 nanocomposite. Adv Compos Hybrid Mater 5:920–933. https://doi.org/10.1007/s42114-021-00391-1

    Article  CAS  Google Scholar 

  15. Lee S, Lee J, Park S, Boo H, Kim HC, Chung TD (2018) Disposable non-enzymatic blood glucose sensing strip based on nanoporous platinum particles. Appl Mater Today 10:24–29. https://doi.org/10.1016/j.apmt.2017.11.009

    Article  Google Scholar 

  16. Zhong G-X, Zhang W-X, Sun Y-M, Wei Y-Q, Lei Y, Peng H-P, Liu A-L, Chen Y-Z, Lin X-H (2015) A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sens Actuators B 212:72–77. https://doi.org/10.1016/j.snb.2015.02.003

    Article  CAS  Google Scholar 

  17. Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim Acta 132:524–532. https://doi.org/10.1016/j.electacta.2014.04.031

    Article  CAS  Google Scholar 

  18. Wang B, Luo Y, Gao L, Liu B, Duan G (2021) High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens Bioelectron 171:112736. https://doi.org/10.1016/j.bios.2020.112736

    Article  CAS  Google Scholar 

  19. Chen M, Cao X, Chang K, Xiang H, Wang R (2021) A novel electrochemical non-enzymatic glucose sensor based on Au nanoparticle-modified indium tin oxide electrode and boronate affinity. Electrochim Acta 368:137603. https://doi.org/10.1016/j.electacta.2020.137603

    Article  CAS  Google Scholar 

  20. Alle M, Park SC, Bandi R, Lee S-H, Kim J-C (2021) Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: Recyclable nanozyme for the colorimetric glucose detection. Carbohydr Polym 253:117239. https://doi.org/10.1016/j.carbpol.2020.117239

    Article  CAS  Google Scholar 

  21. Vinoth V, Pugazhenthiran N, Viswanathan Mangalaraja R, Syed A, Marraiki N, Valdes H, Anandan S (2020) Development of an electrochemical enzyme-free glucose sensor based on self-assembled Pt-Pd bimetallic nanosuperlattices. Analyst 145:7898–7906. https://doi.org/10.1039/d0an01526a

    Article  CAS  Google Scholar 

  22. Guo M-m, Xia Y, Huang W, Li Z (2015) Electrochemical fabrication of stalactite-like copper micropillar arrays via surface rebuilding for ultrasensitive nonenzymatic sensing of glucose. Electrochim Acta 151:340–346. https://doi.org/10.1016/j.electacta.2014.11.041

    Article  CAS  Google Scholar 

  23. Hou L, Zhao H, Bi S, Xu Y, Lu Y (2017) Ultrasensitive and highly selective sandpaper-supported copper framework for non-enzymatic glucose sensor. Electrochim Acta 248:281–291. https://doi.org/10.1016/j.electacta.2017.07.142

    Article  CAS  Google Scholar 

  24. Anupriya J, Velmurugan S, Chen S-M, Hahn Y-B (2022) Enhanced electrochemical performance of in-situ synthesized Cu nanoparticle/C spheres composite for highly sensitive sensing of azathioprine immunosuppressive drug. Compos B 242:110079. https://doi.org/10.1016/j.compositesb.2022.110079

    Article  CAS  Google Scholar 

  25. Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y, Lu S, Xu R, Zhao J (2020) A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156:506–513. https://doi.org/10.1016/j.carbon.2019.10.006

    Article  CAS  Google Scholar 

  26. Shi L, Zhu X, Liu T, Zhao H, Lan M (2016) Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sens Actuators B 227:583–590. https://doi.org/10.1016/j.snb.2015.12.092

    Article  CAS  Google Scholar 

  27. Farid A, Khan AS, Javid M, Usman M, Khan IA, Ahmad AU, Fan Z, Khan AA, Pan L (2022) Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core-shell nanoparticles anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. J Colloid Interface Sci 624:320–337. https://doi.org/10.1016/j.jcis.2022.05.137

    Article  CAS  Google Scholar 

  28. Ye J, Deng D, Wang Y, Luo L, Qian K, Cao S, Feng X (2020) Well-aligned Cu@C nanocubes for highly efficient nonenzymatic glucose detection in human serum. Sens Actuators B 305:127473. https://doi.org/10.1016/j.snb.2019.127473

    Article  CAS  Google Scholar 

  29. Luo Y, Liu W, Huang M, Zhang S, Zhao Y, Yang Q, Yan B, Gu Y, Chen S (2021) Copper nanoparticles decorated halloysite nanotube/polyaniline composites for high performance non-enzymatic glucose sensor. J Electrochem Soc 168:086504. https://doi.org/10.1149/1945-7111/ac1b4d

    Article  CAS  Google Scholar 

  30. Pramanick B, Cadenas LB, Kim D-M, Lee W, Shim Y-B, Martinez-Chapa SO, Madou MJ, Hwang H (2016) Human hair-derived hollow carbon microfibers for electrochemical sensing. Carbon 107:872–877. https://doi.org/10.1016/j.carbon.2016.06.095

    Article  CAS  Google Scholar 

  31. Xu Y, Qian K, Deng D, Luo L, Ye J, Wu H, Miao M, Feng X (2020) Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydr Polym 250:116915. https://doi.org/10.1016/j.carbpol.2020.116915

    Article  CAS  Google Scholar 

  32. Tong Y-z, W-j Zhao WWu, Zhang D-l, He G-j, Yang Z-t, Cao X-w (2021) Realizing enhanced dielectric and mechanical performance of polyvinylidene fluoride/SiC nanocomposites through a bio-inspired interface design. Adv Compos Hybrid Mater 5:263–277. https://doi.org/10.1007/s42114-021-00333-x

    Article  CAS  Google Scholar 

  33. Yang S, Zang G, Peng Q, Fan J, Liu Y, Zhang G, Zhao Y, Li H, Zhang Y (2020) In-situ growth of 3D rosette-like copper nanoparticles on carbon cloth for enhanced sensing of ammonia based on copper electrodissolution. Anal Chim Acta 1104:60–68. https://doi.org/10.1016/j.aca.2020.01.010

    Article  CAS  Google Scholar 

  34. Na W, Lee J, Jun J, Kim W, Kim YK, Jang J (2019) Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection. J Ind Eng Chem 69:358–363. https://doi.org/10.1016/j.jiec.2018.09.050

    Article  CAS  Google Scholar 

  35. Liu Q, Chen J, Yu F, Wu J, Liu Z, Peng B (2021) Multifunctional book-like CuCo–MOF for highly sensitive glucose detection and electrocatalytic oxygen evolution. New J Chem 45:16714–16721. https://doi.org/10.1039/d1nj02931b

    Article  CAS  Google Scholar 

  36. Cheng D, Li P, Zhu X, Liu M, Zhang Y, Liu Y (2021) Enzyme-free electrochemical detection of hydrogen peroxide based on the three-dimensional flower-like Cu-based metal organic frameworks and mxene nanosheets. Chin J Chem 39:2181–2187. https://doi.org/10.1002/cjoc.202100158

    Article  CAS  Google Scholar 

  37. Wang C, Huang S, Luo L, Zhou Y, Lu X, Zhang G, Ye H, Gu J, Cao F (2019) Ultrathin two-dimension metal-organic framework nanosheets/multi-walled carbon nanotube composite films for the electrochemical detection of H2O2. J Electroanal Chem 835:178–185. https://doi.org/10.1016/j.jelechem.2019.01.030

    Article  CAS  Google Scholar 

  38. Ma P, Ma X, Suo Q, Chen F (2019) Cu NPs@NiF electrode preparation by rapid one-step electrodeposition and its sensing performance for glucose. Sens Actuators B 292:203–209. https://doi.org/10.1016/j.snb.2019.04.132

    Article  CAS  Google Scholar 

  39. Xiao X, Peng S, Wang C, Cheng D, Li N, Dong Y, Li Q, Wei D, Liu P, Xie Z, Qu D, Li X (2019) Metal/metal oxide@carbon composites derived from bimetallic Cu/Ni-based MOF and their electrocatalytic performance for glucose sensing. J Electroanal Chem 841:94–100. https://doi.org/10.1016/j.jelechem.2019.04.038

    Article  CAS  Google Scholar 

  40. Song Y, Xu M, Gong C, Shen Y, Wang L, Xie Y, Wang L (2018) Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sens Actuators B 257:792–799. https://doi.org/10.1016/j.snb.2017.11.004

    Article  CAS  Google Scholar 

  41. Dang W, Sun Y, Jiao H, Xu L, Lin M (2020) AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2. J Electroanal Chem 856:113592. https://doi.org/10.1016/j.jelechem.2019.113592

    Article  CAS  Google Scholar 

  42. Wang F, Zhang Y, Liang W, Chen L, Li Y, He X (2018) Non-enzymatic glucose sensor with high sensitivity based on Cu-Al layered double hydroxides. Sens Actuators B 273:41–47. https://doi.org/10.1016/j.snb.2018.06.038

    Article  CAS  Google Scholar 

  43. Li Z-H, Zhao X-L, Jiang X-C, Wu Y-H, Chen C, Zhu Z-G, Marty J-L, Chen Q-S (2018) An enhanced nonenzymatic electrochemical glucose sensor based on copper-palladium nanoparticles modified glassy carbon electrodes. Electroanalysis 30:1811–1819. https://doi.org/10.1002/elan.201800017

    Article  CAS  Google Scholar 

  44. Gao Y, Yang F, Yu Q, Fan R, Yang M, Rao S, Lan Q, Yang Z, Yang Z (2019) Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Mikrochim Acta 186:192. https://doi.org/10.1007/s00604-019-3263-6

    Article  CAS  Google Scholar 

  45. Barbee B, Muchharla B, Adedeji A, Karoui A, Kumar Sadasivuni K, Sha MS, Abdullah AM, Slaughter G, Kumar B (2022) Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection. Sci Rep 12:7507. https://doi.org/10.1038/s41598-022-11563-4

    Article  CAS  Google Scholar 

  46. Tang L, Huan K, Deng D, Han L, Zeng Z, Luo L (2020) Glucose sensor based on Pd nanosheets deposited on Cu/Cu2O nanocomposites by galvanic replacement. Colloids Surf B 188:110797. https://doi.org/10.1016/j.colsurfb.2020.110797

    Article  CAS  Google Scholar 

  47. Xu G-R, Ge C, Liu D, Jin L, Li Y-C, Zhang T-H, Rahman MM, Li X-B, Kim W (2019) In-situ electrochemical deposition of dendritic Cu–Cu2S nanocomposites onto glassy carbon electrode for sensitive and non-enzymatic detection of glucose. J Electroanal Chem 847:113177. https://doi.org/10.1016/j.jelechem.2019.05.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61571280 and 61971274) and the Science and Technology Commission of Shanghai Municipality (20230742300 and 18595800700).

Author information

Authors and Affiliations

Authors

Contributions

KQ was involved in methodology, investigation, data curation, writing and original draft. YX contributed to conceptualization, methodology, data curation. MM was involved in investigation. DD contributed to writing-review & editing and funding acquisition. LL contributed to writing-review & editing, funding acquisition and supervision. XF contributed to writing-review & editing, supervision, resources and funding acquisition.

Corresponding authors

Correspondence to Liqiang Luo or Xin Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1281 kb)

Supplementary file2 (DOCX 1224 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, K., Xu, Y., Miao, M. et al. Engineering metalized surface of single hair via electroless Cu-plating strategy for self-supported nonenzymatic glucose sensor. J Mater Sci 58, 15074–15085 (2023). https://doi.org/10.1007/s10853-023-08974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08974-7

Navigation