Skip to main content
Log in

Progress, applications, and perspectives of titanium-based braze filler metal: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The progress of materials has never stopped, and the joining process of dissimilar materials is still a serious challenge. Vacuum brazing technology is a joining process developed in the 1940s and still meets the challenges of advanced dissimilar material joining. The choice of filler metal directly determines the performance of the brazing joint. Titanium-based filler metal is widely used because of its excellent properties. Titanium-based fillers of different compositions and contents are used to address various joining challenges and facilitate material advancements. In recent decades, dozens of types of titanium-based fillers have been developed, mainly focusing on the continuous optimization of the element types and composition content in the fillers. This paper reviews the development of titanium-based filler metal in recent years. The unique roles of common Ti, Zr, Co, Be, Mo, V, Nb, RE, and other elements in the components of titanium-based filler metal are summarized. The melting point of the filler metal with different element combinations and different content combinations and the mechanical strength of the experimental joints were compared. In addition, the characteristics, classification, and production methods of titanium-based filler metal are introduced, and the main application fields and brazing materials of titanium-based filler metal are discussed. Finally, the future development and challenges of titanium-based filler metal are proposed, and the prospect is made in order to provide reference for the future research on dissimilar material connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

Similar content being viewed by others

Data availability

Data available on requirements.

References

  1. Aamir M, Giasin K, Tolouei-Rad M, Vafadar A (2020) A review: drilling performance and hole quality of aluminium alloys for aerospace applications. J Market Res 9:12484–12500. https://doi.org/10.1016/j.jmrt.2020.09.003

    Article  CAS  Google Scholar 

  2. Wang G, Zhao Y, Hao Y (2018) Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J Mater Sci Technol 34:73–91. https://doi.org/10.1016/j.jmst.2017.11.041

    Article  CAS  Google Scholar 

  3. Quazi MM, Ishak M, Fazal MA, Arslan A, Rubaiee S, Qaban A, Aiman MH, Sultan T, Ali MM, Manladan SM (2020) Current research and development status of dissimilar materials laser welding of titanium and its alloys. Opt Laser Technol 126:106090. https://doi.org/10.1016/j.optlastec.2020.106090

    Article  CAS  Google Scholar 

  4. Shankar S, Mehta KP, Chattopadhyaya S, Vilaça P (2022) Dissimilar friction stir welding of Al to non-Al metallic materials: an overview. Materials Chemistry and Physics. 288:126371. https://doi.org/10.1016/j.matchemphys.2022.126371

    Article  CAS  Google Scholar 

  5. Qiu R, Shi H, Zhang K, Tu Y, Iwamoto C, Satonaka S (2010) Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding. Mater Charact 61(7):684–688. https://doi.org/10.1016/j.matchar.2010.03.015

    Article  CAS  Google Scholar 

  6. Chen HC, Pinkerton AJ, Li L, Liu Z, Mistry AT (2011) Gap-free fibre laser welding of Zn-coated steel on Al alloy for light-weight automotive applications. Mater Des 32(2):495–504. https://doi.org/10.1016/j.matdes.2010.08.034

    Article  CAS  Google Scholar 

  7. Lee WB, Schmuecker M, Mercardo UA, Biallas G, Jung SB (2006) Interfacial reaction in steel–aluminum joints made by friction stir welding. Scr Mater 55(4):355–358. https://doi.org/10.1016/j.scriptamat.2006.04.028

    Article  CAS  Google Scholar 

  8. Pouranvari M, Abbasi M (2018) Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: microstructure and strengthening mechanisms. J Alloys Compd 749:121–127. https://doi.org/10.1016/j.jallcom.2018.03.224

    Article  CAS  Google Scholar 

  9. Liu S, Miao J, Zhang W, Wei R, Chen C, Wang T, Zhao W, Jiang Z, Li F (2020) Interfacial microstructure and shear strength of TC4 alloy joints vacuum brazed with Ti–Zr–Ni–Cu filler metal. Mater Sci Eng A 775:138990. https://doi.org/10.1016/j.msea.2020.138990

    Article  CAS  Google Scholar 

  10. Naik S, Panda S, Padhye S, Lobo G, Joshi G, Deshmukh S, Ingle A (2021) Parametric review on friction stir welding for under water and dissimilar metal joining applications. Mater Today Proc 47:3117–3122. https://doi.org/10.1016/j.matpr.2021.06.168

    Article  CAS  Google Scholar 

  11. Ganjeh E, Sarkhosh H, Bajgholi ME, Khorsand H, Ghaffari M (2012) Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys. Mater Charact 71:31–40. https://doi.org/10.1016/j.matchar.2012.05.016

    Article  CAS  Google Scholar 

  12. Jing Y, Gao X, Su D, Zhao C, Jiang J (2018) The effects of Zr level in Ti–Zr–Cu–Ni brazing fillers for brazing Ti-6Al-4V. J Manuf Process 31:124–130. https://doi.org/10.1016/j.jmapro.2017.11.005

    Article  Google Scholar 

  13. Ganjeh E, Sarkhosh H (2013) Microstructural, mechanical and fractographical study of titanium-CP and Ti–6Al–4V similar brazing with Ti-based filler. Mater Sci Eng A 559:119–129. https://doi.org/10.1016/j.msea.2012.08.043

    Article  CAS  Google Scholar 

  14. Cao X, Dong K, Zhu R, Wang Q, Kong J (2021) A high-strength vacuum brazed TC4/316L joint with a Ti–Zr-based amorphous ribbon as the filler metal. Vacuum 187:110070. https://doi.org/10.1016/j.vacuum.2021.110070

    Article  CAS  Google Scholar 

  15. Jiang C, Li X, Wan B, Zhu D, Qu S, Yang C (2022) Microstructure evolution and mechanical properties of TiAl/GH536 joints vacuum brazed with Ti–Zr–Cu–Ni filler metal. Intermetallics. 142:107468. https://doi.org/10.1016/j.intermet.2022.107468

    Article  CAS  Google Scholar 

  16. Wang N, Wang DP, Yang ZW, Wang Y (2016) Interfacial microstructure and mechanical properties of zirconia ceramic and niobium joints vacuum brazed with two Ag-based active filler metals. Ceram Int 42:12815–12824. https://doi.org/10.1016/j.ceramint.2016.05.045

    Article  CAS  Google Scholar 

  17. Zhang T, Yang X, Miao K, Li D, Chen S, Cui X, Huang M, Fan G, Geng L (2018) Microstructure evolution and brazing mechanism of Ti5Si3/Ti3Al composite and Ni-based superalloy joints using Ti–Zr–Cu–Ni filler alloy. Mater Sci Eng A 713:28–34. https://doi.org/10.1016/j.msea.2017.12.049

    Article  CAS  Google Scholar 

  18. Li S, Liu Z, Xia Y, Wang X, He P, Jiu Y, Jia L, Long W (2021) Vacuum brazing TiAl intermetallics to GH3030 alloy with a multi-component Ti-based filler metal. J Manuf Process 70:484–493. https://doi.org/10.1016/j.jmapro.2021.09.001

    Article  Google Scholar 

  19. Cai YS, Liu RC, Zhu ZW, Cui YY, Yang R (2017) Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti–Zr–Cu–Ni amorphous alloy as filler metal. Intermetallics 91:35–44. https://doi.org/10.1016/j.intermet.2017.08.008

    Article  CAS  Google Scholar 

  20. Cai YS, Liu RC, Ji HB, Cui YY, Yang R (2021) Vacuum brazing TiAl-based intermetallics using novel Ti–Fe–Mn eutectic brazing alloy. Intermetallics. 136:107274. https://doi.org/10.1016/j.intermet.2021.107274

    Article  CAS  Google Scholar 

  21. Qiu Q, Wang Y, Yang Z, Hu X, Wang D (2016) Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti–Zr–Ni–Cu brazing powder without and with Mo additive. Mater Des 90:650–659. https://doi.org/10.1016/j.matdes.2015.11.008

    Article  CAS  Google Scholar 

  22. Jing Y, Ren X, Shang Y, Xiong H, Jiang J (2021) Develop a novel high-strength vacuum brazing technique for γ-TiAl intermetallic. Int J Lightw Mater Manuf 4:237–245. https://doi.org/10.1016/j.ijlmm.2020.11.002

    Article  CAS  Google Scholar 

  23. Li L, Li X, Hu K, He B, Man H (2019) Brazeability evaluation of Ti–Zr–Cu–Ni–Co–Mo filler for vacuum brazing TiAl-based alloy. Trans Nonferr Metals Soc China 29:754–763. https://doi.org/10.1016/S1003-6326(19)64985-X

    Article  CAS  Google Scholar 

  24. Li L, Zhao W, Feng Z, Sun J, Li X (2020) Microstructure and shear strength of γ-TiAl/GH536 joints brazed with Ti−Zr−Cu−Ni−Fe−Co−Mo filler alloy. Trans Nonferr Metals Soc China 30:2143–2155. https://doi.org/10.1016/S1003-6326(20)65367-5

    Article  CAS  Google Scholar 

  25. Xia Y, Li P, Hao X, Dong H (2018) Interfacial microstructure and mechanical property of TC4 titanium alloy/316L stainless steel joint brazed with Ti–Zr–Cu–Ni-V amorphous filler metal. J Manuf Process 35:382–395. https://doi.org/10.1016/j.jmapro.2018.08.022

    Article  Google Scholar 

  26. Ren HS, Xiong HP, Chen B, Pang SJ, Chen BQ, Ye L (2016) Microstructures and mechanical properties of vacuum brazed Ti3Al/TiAl joints using two Ti-based filler metals. J Mater Sci Technol 32:372–380. https://doi.org/10.1016/j.jmst.2015.11.018

    Article  CAS  Google Scholar 

  27. Jing Y, Yue X, Gao X, Su D, Hou J (2016) The influence of Zr content on the performance of TiZrCuNi brazing filler. Mater Sci Eng, A 678:190–196. https://doi.org/10.1016/j.msea.2016.09.115

    Article  CAS  Google Scholar 

  28. Sun L, Pang S, Liu Y, Xiong H, Zhang T (2017) A Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous filler metal for improving the strength of Ti–6Al–4V alloy brazing joint. Prog Nat Sci Mater Int 27:687–694. https://doi.org/10.1016/j.pnsc.2017.09.005

    Article  CAS  Google Scholar 

  29. Li X, Li L, Hu K, Qu S (2015) Vacuum brazing of TiAl-based intermetallics with Ti–Zr–Cu–Ni–Co amorphous alloy as filler metal. Intermetallics 57:7–16. https://doi.org/10.1016/j.intermet.2014.09.010

    Article  CAS  Google Scholar 

  30. Lee JG, Kim GH, Lee MK, Rhee CK (2010) Intermetallic formation in a Ti–Cu dissimilar joint brazed using a Zr-based amorphous alloy filler. Intermetallics 18:529–535. https://doi.org/10.1016/j.intermet.2009.10.005

    Article  CAS  Google Scholar 

  31. Li S, Du D, Zhang L, Song X, Zheng Y, Huang G, Long W (2021) A review on filler materials for brazing of carbon-carbon composites. Rev Adv Mater Sci 60:92–111. https://doi.org/10.1515/rams-2021-0007

    Article  CAS  Google Scholar 

  32. Tashi RS, Mousavi SA, Atabaki MM (2014) Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer. Mater Design (1980–2015) 54:161–167. https://doi.org/10.1016/j.matdes.2013.07.103

    Article  CAS  Google Scholar 

  33. Lee MK, Park JJ, Lee GJ, Lee JG, Kim DW, Lim CH, Rhee CK, Lee YB, Lee JK, Hong SJ (2011) Corrosion of Ti–STS dissimilar joints brazed by a Ag interlayer and Ag–Cu–(Pd) alloy fillers. J Nucl Mater 409(3):183–187. https://doi.org/10.1016/j.jnucmat.2010.12.003

    Article  CAS  Google Scholar 

  34. Cheng Z, Sun J, Gao X, Wang Y, Cui J, Wang T, Chang H (2023) Irradiation effects in high-entropy alloys and their applications. J Alloys Compd 930:166768. https://doi.org/10.1016/j.jallcom.2022.166768

    Article  CAS  Google Scholar 

  35. Botstein O, Schwarzman A, Rabinkin A (1996) Induction brazing of Ti-6Al-4V alloy with amorphous 25Ti–25Zr–50Cu brazing filler metal. Mater Sci Eng A 206(1):14–23. https://doi.org/10.1016/0921-5093(95)09885-2

    Article  Google Scholar 

  36. Pang S, Sun L, Xiong H, Chen C, Liu Y, Li H, Zhang T (2016) A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scri Mater 117:55–59. https://doi.org/10.1016/j.scriptamat.2016.02.006

    Article  CAS  Google Scholar 

  37. Hardwick L, Webb P, Goodall R (2023) Design of higher temperature copper brazing filler metals with reduced brittle phase content. Mater Today Commun 35:105524. https://doi.org/10.1016/j.mtcomm.2023.105524

    Article  CAS  Google Scholar 

  38. Way M, Luo D, Tuley R, Goodall R (2021) A new high entropy alloy brazing filler metal design for joining skutterudite thermoelectrics to copper. J Alloys Compd 858:157750. https://doi.org/10.1016/j.jallcom.2020.157750

    Article  CAS  Google Scholar 

  39. Dong H, Xia Y, Xu X, Naz GJ, Hao X, Li P, Zhou J, Dong C (2020) Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model. J Mater Sci Technol 39:89–98. https://doi.org/10.1016/j.jmst.2019.08.028

    Article  Google Scholar 

  40. Latuszkiewicz J, Kulik T, Matyja H (1980) Thermal stability of amorphous Co–Fe–B, Co–Si–B and Co–Fe–Si–B alloys. J Mater Sci 15:2396–2398. https://doi.org/10.1007/BF00552336

    Article  CAS  Google Scholar 

  41. Onzawa T (2008) Outline of brazing of different materials. Weld Int 22:351–357. https://doi.org/10.1080/09507110802276341

    Article  Google Scholar 

  42. Dong H, Zhang R, Xia Y, Hao X, Li P (2021) Interfacial features of TiAl alloy/316L stainless steel joint brazed with Zr−Cu−Ni−Al amorphous filler metal. Trans Nonferr Metals Soc China 31:1680–1688. https://doi.org/10.1016/S1003-6326(21)65607-8

    Article  CAS  Google Scholar 

  43. Wang M, Li K, Lu R, Feng Z, Wei T, Zhou Q, Zhai W (2021) Advanced high-temperature resistant (RT-1000 °C) aluminum phosphate-based adhesive for titanium superalloys in extreme environments. Ceram Int 47:32988–33001. https://doi.org/10.1016/j.ceramint.2021.08.199

    Article  CAS  Google Scholar 

  44. Li JK, Liu X, Zhou JE (2013) Joining of C/SiC composite and TC4 Alloy Using 70Ag28Cu2Ti active brazing alloy. KEM 544:167–171. https://doi.org/10.4028/www.scientific.net/KEM.544.167

    Article  CAS  Google Scholar 

  45. Elrefaey (2012) High-temperature brazing in aerospace engineering.pdf, (n.d.)

  46. He Y, Lu C, Ni C, Chen Q, Zheng W, Wang D, Wei L, Wang L, Sun Y, Zou H, Gao Z, Yang J (2020) Tailoring microstructure and mechanical performance of the TC4 titanium alloy brazed joint through doping rare-earth element Dy into Ti–Cu–Ni filler alloy. J Manuf Process 50:255–265. https://doi.org/10.1016/j.jmapro.2019.12.044

    Article  Google Scholar 

  47. Si XQ, Zhao HY, Cao J, Song XG, Tang DY, Feng JC (2015) Brazing high Nb containing TiAl alloy using Ti–28Ni eutectic brazing alloy: Interfacial microstructure and joining properties. Mater Sci Eng A 636:522–528. https://doi.org/10.1016/j.msea.2015.03.108

    Article  CAS  Google Scholar 

  48. Han GH, Bian H, Zhao HY, Song XG, Li Y, Liu D, Cao J, Feng JC (2018) Interfacial microstructure and mechanical properties of TZM alloy and ZrC particle reinforced tungsten composite joint brazed using Ti-61Ni filler. J Alloy Compd 747:266–275. https://doi.org/10.1016/j.jallcom.2018.02.258

    Article  CAS  Google Scholar 

  49. Song XG, Cao J, Liu YZ, Feng JC (2012) Brazing high Nb containing TiAl alloy using TiNi–Nb eutectic braze alloy. Intermetallics 22:136–141. https://doi.org/10.1016/j.intermet.2011.10.020

    Article  CAS  Google Scholar 

  50. Wang Y, Cai XQ, Yang ZW, Wang DP, Liu XG, Liu YC (2017) Effects of Nb content in Ti–Ni–Nb brazing alloys on the microstructure and mechanical properties of Ti–22Al–25Nb alloy brazed joints. J Mater Sci Technol 33:682–689. https://doi.org/10.1016/j.jmst.2017.03.021

    Article  CAS  Google Scholar 

  51. Chang CT, Du YC, Shiue RK, Chang CS (2006) Infrared brazing of high-strength titanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils. Mater Sci Eng A 420(1–2):155–164. https://doi.org/10.1016/j.msea.2006.01.046

    Article  CAS  Google Scholar 

  52. Shiue RK, Wu SK, Chen YT (2010) Strong bonding of infrared brazed α2-Ti3Al and Ti–6Al–4V using Ti–Cu–Ni fillers. Intermetallics 18(1):107–114. https://doi.org/10.1016/j.intermet.2009.06.017

    Article  CAS  Google Scholar 

  53. Shiue RK, Wu SK, Chen YT, Shiue CY (2008) Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals. Intermetallics 16(9):1083–1089. https://doi.org/10.1016/j.intermet.2008.06.007

    Article  CAS  Google Scholar 

  54. Wallis IC, Ubhi HS, Bacos MP, Josso P, Lindqvist J, Lundstrom D, Wisbey A (2004) Brazed joints in γ TiAl sheet: microstructure and properties. Intermetallics 12(3):303–316. https://doi.org/10.1016/j.intermet.2003.11.002

    Article  CAS  Google Scholar 

  55. Lee MK, Lee JG, Choi YH, Kim DW, Rhee CK, Lee YB, Hong SJ (2010) Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett 64(9):1105–1108. https://doi.org/10.1016/j.matlet.2010.02.024

    Article  CAS  Google Scholar 

  56. Liang M, Qin Y, Zhang D, Zhao F (2022) Microstructural evolution and mechanical properties of vacuum brazed TC4 titanium alloy joints with Ti–Zr–Ni filler metal. J Mater Eng Perform 31(11):9340–9348. https://doi.org/10.1007/s11665-022-06907-0

    Article  CAS  Google Scholar 

  57. Song XG, Cao J, Chen HY, Wang YF, Feng JC (2012) Brazing TiAl intermetallics using TiNi–V eutectic brazing alloy. Mater Sci Eng, A 551:133–139. https://doi.org/10.1016/j.msea.2012.05.002

    Article  CAS  Google Scholar 

  58. Jing Y, Xiong H, Shang Y, Wang J, Cheng Y, Jiang J (2020) Design TiZrCuNi filler materials for vacuum brazing TA15 alloy. J Manuf Process 53:328–335. https://doi.org/10.1016/j.jmapro.2020.02.021

    Article  Google Scholar 

  59. Yuan L, Xiong JT, Du YJ, Wang Y, Shi JM, Li JL (2020) Effects of pure Ti or Zr powder on microstructure and mechanical properties of Ti6Al4V and Ti2AlNb joints brazed with TiZrCuNi. Mater Sci Eng A. 788:139602. https://doi.org/10.1016/j.msea.2020.139602

    Article  CAS  Google Scholar 

  60. Fan D, Huang J, Wang Y, Chen S, Zhao X (2014) Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti–Zr–Be. Mater Sci Eng A 617:66–72. https://doi.org/10.1016/j.msea.2014.08.053

    Article  CAS  Google Scholar 

  61. Hu S, Feng D, Xia L, Wang K, Liu R, Xia Z, Niu H, Song X (2019) Joints of continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites to Ti60 alloy brazed using Ti–Zr–Ni–Cu active alloy. Chin J Aeronaut 32:715–722. https://doi.org/10.1016/j.cja.2018.07.006

    Article  Google Scholar 

  62. Li X, Wang H, Wang T, Zhang B, Yu T, Li R (2017) Microstructural evolution mechanisms of Ti600 and Ni-25%Si joint brazed with Ti–Zr–Ni–Cu amorphous filler foil. J Mater Process Technol 240:414–419. https://doi.org/10.1016/j.jmatprotec.2016.10.021

    Article  CAS  Google Scholar 

  63. He P, Feng JC, Zhou H (2005) Microstructure and strength of brazed joints of Ti3Al-base alloy with TiZrNiCu filler metal. Mater Sci Eng A 392:81–86. https://doi.org/10.1016/j.msea.2004.07.068

    Article  CAS  Google Scholar 

  64. Ren HS, Xiong HP, Chen B, Pang SJ, Chen BQ, Ye L (2015) Vacuum brazing of Ti3Al-based alloy to TiAl using TiZrCuNi(Co) fillers. J Mater Process Technol 224:26–32. https://doi.org/10.1016/j.jmatprotec.2015.04.024

    Article  CAS  Google Scholar 

  65. Brazing continuous carbon fiber reinforced Li2O–Al2O3–SiO2 ceramic matrix composites to Ti–6Al–4V alloy using Ag–Cu–Ti active filler metal ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/abs/pii/S0264127515302550. Accessed 12 Mar 2023

  66. Xia Y, Dong H, Hao X, Li P, Li S (2019) Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti–Cu-based amorphous filler metal. J Mater Process Technol 269:35–44. https://doi.org/10.1016/j.jmatprotec.2019.01.020

    Article  CAS  Google Scholar 

  67. Dong KW, Kong J, Yang Y, Wang HP, Peng Y, Zhou Q, Wang KH (2019) Vacuum brazing of TiAl-based alloy and GH536 superalloy with a low-melting point amorphous Ti35Zr25Be30Co10 filler. J Manuf Process 47:410–418. https://doi.org/10.1016/j.jmapro.2019.07.042

    Article  Google Scholar 

  68. Dong H, Yang Z, Yang G, Dong C (2013) Vacuum brazing of TiAl alloy to 40Cr steel with Ti60Ni22Cu10Zr8 alloy foil as filler metal. Mater Sci Eng A 561:252–258. https://doi.org/10.1016/j.msea.2012.11.014

    Article  CAS  Google Scholar 

  69. Zhang H-H, Cui Z-D, Zhu S-L, Guo S-W, Yang X-J, Inoue A (2021) Microstructure and mechanical properties of TC4 joints brazed with Ti–Zr–Cu–Sn amorphous filler alloy. Rare Met 40:1881–1889. https://doi.org/10.1007/s12598-020-01424-2

    Article  CAS  Google Scholar 

  70. Bai X, Liu M, Pang S, Xiong H, Ren X, Ren H, Zhang T (2023) Novel Ti–Zr–Co–Cu–M (M = Sn, V, Al) amorphous/nanocrystalline brazing fillers for joining Ti–6Al–4V alloy. Mater Charact 196:112607. https://doi.org/10.1016/j.matchar.2022.112607

    Article  CAS  Google Scholar 

  71. Noda T, Shimizu T, Okabe M, Iikubo T (1997) Joining of TiAl and steels by induction brazing. Mater Sci Eng A 239–240:613–618. https://doi.org/10.1016/S0921-5093(97)00638-2

    Article  Google Scholar 

  72. Lee SJ, Wu SK, Lin RY (1998) Infrared joining of TiAl intermetallics using Ti-15Cu-15Ni foil—I. The microstructure morphologies of joint interfaces. Acta Mater. 46(4):1283–1295. https://doi.org/10.1016/S1359-6454(97)00298-X

    Article  CAS  Google Scholar 

  73. Galindo-Nava EI, Jing YJ, Jiang J (2018) Predicting the hardness and solute distribution during brazing of Ti-6Al-4V with TiZrCuNi filler metals. Mater Sci Eng A 712:122–126. https://doi.org/10.1016/j.msea.2017.11.087

    Article  CAS  Google Scholar 

  74. Xia Y, Dong H, Zhang R, Wang Y, Hao X, Li P, Dong C (2020) Interfacial microstructure and shear strength of Ti6Al4V alloy/316 L stainless steel joint brazed with Ti33.3Zr16.7Cu50−xNix amorphous filler metals. Mater Des 187:108380. https://doi.org/10.1016/j.matdes.2019.108380

    Article  CAS  Google Scholar 

  75. Xia Y, Dong H, Li P (2020) Brazing TC4 titanium alloy/316L stainless steel joint with Ti50-xZrxCu39Ni11 amorphous filler metals. J Alloys Compd 849:156650. https://doi.org/10.1016/j.jallcom.2020.156650

    Article  CAS  Google Scholar 

  76. Yue X, Xie Z, Jing Y (2017) Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy. Appl Phys A 123:1–7. https://doi.org/10.1007/s00339-017-1072-5

    Article  CAS  Google Scholar 

  77. Yue X, Xie Z, Jing Y (2017) Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy. Appl Phys A 123:1–7. https://doi.org/10.1007/s00339-017-1072-5

    Article  CAS  Google Scholar 

  78. Jing Y, Su D, Yue X, Britton TB, Jiang J (2017) The development of high strength brazing technique for Ti-6Al-4V using TiZrCuNi amorphous filler. Mater Charact 131:526–531. https://doi.org/10.1016/j.matchar.2017.07.039

    Article  CAS  Google Scholar 

  79. Shang Y-L, Ren X-Y, Ren H-S, Pang S-J, Jing Y-J, Cheng Y, Xiong H-P (2022) Effect of element Zr in Ti–Zr–Ni-Nb system brazing filler alloys on the microstructure and strength of TiAl/TiAl joints, Weld. World 66:1437–1446. https://doi.org/10.1007/s40194-022-01274-9

    Article  CAS  Google Scholar 

  80. Wang X, Cheng L, Fan S, Zhang L (2012) Microstructure and mechanical properties of the GH783/25D C/SiC joints brazed with Cu–Ti+Mo composite filler. MaterDes 36:499–504. https://doi.org/10.1016/j.matdes.2011.11.058

    Article  CAS  Google Scholar 

  81. Li M, Shi K, Zhu D, Dong D, Liu L, Wang X (2021) Microstructure and mechanical properties of Si3N4 ceramic and (TiB + Y2O3)/Ti matrix composite joints brazed with AgCu/Cu foam/AgCu multilayered filler. J Manuf Process 66:220–227. https://doi.org/10.1016/j.jmapro.2021.04.025

    Article  Google Scholar 

  82. Wang Y, Jiao M, Yang Z, Wang D, Liu Y (2018) Vacuum brazing of Ti2AlNb and TC4 alloys using Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + Mo filler metals: Microstructural evolution and mechanical properties. Arch Civil Mech Eng. 18:546–556. https://doi.org/10.1016/j.acme.2017.10.006

    Article  Google Scholar 

  83. Li Li, Li X, Li Z, Ke H, Shengguan Q, Yang C (2016) Comparison of tial-based intermetallics joints brazed with amorphous and crystalline Ti–Zr–Cu–Ni–Co–Mo fillers. Adv Eng Mater 18(2):341–347. https://doi.org/10.1002/adem.201500190

    Article  CAS  Google Scholar 

  84. Gong P, Yao KF, Shao Y (2012) Effects of Fe addition on glass-forming ability and mechanical properties of Ti–Zr–Be bulk metallic glass. J Alloys Compd 536:26–29. https://doi.org/10.1016/j.jallcom.2012.04.048

    Article  CAS  Google Scholar 

  85. Lee MK, Lee JG (2013) Mechanical and corrosion properties of Ti–6Al–4V alloy joints brazed with a low-melting-point 62.7Zr–11.0Ti–13.2Cu–9.8Ni–3.3Be amorphous filler metal. Mater Charact 81:19–27. https://doi.org/10.1016/j.matchar.2013.04.002

    Article  CAS  Google Scholar 

  86. Ren X, Ren H, Shang Y, Xiong H, Zhang K, Zheng J, Liu D, Lin J, Jiang J (2020) Microstructure evolution and mechanical properties of Ti2AlNb/TiAl brazed joint using newly-developed Ti–Ni–Nb–Zr filler alloy. Prog Nat Sci Mater Int 30:410–416. https://doi.org/10.1016/j.pnsc.2020.02.007

    Article  CAS  Google Scholar 

  87. Ren X, Liu W, Ren H, Jing Y, Mao W, Xiong H (2020) Microstructures and joining characteristics of NbSS/Nb5Si3 composite joints by newly-developed Ti66-Ni22-Nb12 filler alloy. J Mater Sci Technol 58:95–99. https://doi.org/10.1016/j.jmst.2020.03.047

    Article  CAS  Google Scholar 

  88. Pathak AK, Khan M, Gschneidner KA Jr, McCallum RW, Zhou L, Sun K, Dennis KW, Zhou C, Pinkerton FE, Kramer MJ, Pecharsky VK (2015) Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv Mater 27:2663–2667. https://doi.org/10.1002/adma.201404892

    Article  CAS  Google Scholar 

  89. Qiao JC, Yao Y, Pelletier JM, Keer LM (2016) Understanding of micro-alloying on plasticity in Cu46Zr47−xAl7Dyx (0≤ x ≤ 8) bulk metallic glasses under compression: based on mechanical relaxations and theoretical analysis. Int J Plast 82:62–75. https://doi.org/10.1016/j.ijplas.2016.02.002

    Article  CAS  Google Scholar 

  90. Chen H, Liao J, Wu S, Gong L, Wang J, Wang H (2018) Effects of Dy substitution for Sn on the solderability and mechanical property of the standard near eutectic Sn–Ag–Cu alloy. J Mater Sci Mater Electron 29:12662–12668. https://doi.org/10.1007/s10854-018-9383-7

    Article  CAS  Google Scholar 

  91. Li R, Pang S, Men H, Ma C, Zhang T (2006) Formation and mechanical properties of (Ce–La–Pr–Nd)–Co–Al bulk glassy alloys with superior glass-forming ability. Scripta Mater 54:1123–1126. https://doi.org/10.1016/j.scriptamat.2005.11.074

    Article  CAS  Google Scholar 

  92. Zhang T, Li R, Pang S (2009) Effect of similar elements on improving glass-forming ability of La–Ce-based alloys. J Alloy Compd 483:60–63. https://doi.org/10.1016/j.jallcom.2008.07.224

    Article  CAS  Google Scholar 

  93. Son S, Kim S, Kwak J, Gu GH, Hwang DS, Kim Y-T, Kim HS (2021) Superior antifouling properties of a CoCrFeMnNi high-entropy alloy. Mater Lett 300:130130. https://doi.org/10.1016/j.matlet.2021.130130

    Article  CAS  Google Scholar 

  94. Qiu X (2021) Microstructure and corrosion properties of Al2CrFeCo CuNiTi high entropy alloys prepared by additive manufacturing. J Alloys Compd 887:161422. https://doi.org/10.1016/j.jallcom.2021.161422

    Article  CAS  Google Scholar 

  95. Lu ZP, Liu CT (2004) Role of minor alloying additions in formation of bulk metallic glasses: a review. J Mater Sci 39:3965–3974. https://doi.org/10.1023/B:JMSC.0000031478.73621.64

    Article  CAS  Google Scholar 

  96. Xu L, Chen Z, Zheng Y, Wang X, Han S, Xiao S, Chen Y (2021) Deformation behavior and microstructure evolution of as-cast Ti2ZrMo0.5Nb0.5 high entropy alloy. J Mater Res Technol 13:2469–2481. https://doi.org/10.1016/j.jmrt.2021.06.040

    Article  CAS  Google Scholar 

  97. Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R Rep 44:45–89. https://doi.org/10.1016/j.mser.2004.03.001

    Article  CAS  Google Scholar 

  98. Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306. https://doi.org/10.1016/S1359-6454(99)00300-6

    Article  CAS  Google Scholar 

  99. Oak J-J, Inoue A (2008) Formation, mechanical properties and corrosion resistance of Ti–Pd base glassy alloys. J Non-Cryst Solids 354:1828–1832. https://doi.org/10.1016/j.jnoncrysol.2007.10.025

    Article  CAS  Google Scholar 

  100. Lin HC, Tsai PH, Ke JH, Li JB, Jang JSC, Huang CH, Haung JC (2014) Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application. Intermetallics 55:22–27. https://doi.org/10.1016/j.intermet.2014.07.003

    Article  CAS  Google Scholar 

  101. Guo Y, Bataev I, Georgarakis K, Jorge AM, Nogueira RP, Pons M, Yavari AR (2015) Ni- and Cu-free Ti-based metallic glasses with potential biomedical application. Intermetallics 63:86–96. https://doi.org/10.1016/j.intermet.2015.04.004

    Article  CAS  Google Scholar 

  102. Pang S, Sun L, Xiong H, Chen C, Liu Y, Li H, Zhang T (2016) A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scripta Mater 117:55–59. https://doi.org/10.1016/j.scriptamat.2016.02.006

    Article  CAS  Google Scholar 

  103. Lee JG, Choi YH, Lee JK, Lee GJ, Lee MK, Rhee CK (2010) Low-temperature brazing of titanium by the application of a Zr–Ti–Ni–Cu–Be bulk metallic glass (BMG) alloy as a filler. Intermetallics 18:70–73. https://doi.org/10.1016/j.intermet.2009.06.012

    Article  CAS  Google Scholar 

  104. Effects of brazing temperature and testing temperature on the microstructure and shear strength of γ-TiAl joints. ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/abs/pii/S0921509315002816. Accessed 12 Mar 2023

  105. Hong I-T, Koo C-H (2006) Microstructural evolution and shear strength of brazing C103 and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt%) filler metal. Int J Refract Metals Hard Mater 24:247–252. https://doi.org/10.1016/j.ijrmhm.2005.05.014

    Article  CAS  Google Scholar 

  106. Hong I-T, Koo C-H (2005) Vacuum-furnace brazing of C103 and Ti–6Al–4V with Ti–15Cu–15Ni filler-metal. Mater Sci Eng A 398:113–127. https://doi.org/10.1016/j.msea.2005.03.007

    Article  CAS  Google Scholar 

  107. Zhu W, Zhang H, Guo C, Liu Y, Ran X (2019) Wetting and brazing characteristic of high nitrogen austenitic stainless steel and 316L austenitic stainless steel by Ag–Cu filler. Vacuum 166:97–106. https://doi.org/10.1016/j.vacuum.2019.04.064

    Article  CAS  Google Scholar 

  108. Song TF, Jiang XS, Shao ZY, Fang YJ, Mo DF, Zhu DG, Zhu MH (2017) Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti-6Al-4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer. Vacuum 145:68–76. https://doi.org/10.1016/j.vacuum.2017.08.017

    Article  CAS  Google Scholar 

  109. Min M, Mao Y, Deng Q, Wang G, Wang S (2020) Vacuum brazing of Mo to 316L stainless steel using BNi-2 paste and Cu interlayer. Vacuum 175:109282. https://doi.org/10.1016/j.vacuum.2020.109282

    Article  CAS  Google Scholar 

  110. Zhu D, Xu H, Dong D, He Y, Wang X, He Q (2020) Brazing of (TiB + Y2O3) reinforced titanium matrix composites using CuTiZrNi amorphous filler alloy. Vacuum 174:109212. https://doi.org/10.1016/j.vacuum.2020.109212

    Article  CAS  Google Scholar 

  111. Lee JG, Lee M-K (2017) Microstructure and mechanical behavior of a titanium-to-stainless steel dissimilar joint brazed with Ag-Cu alloy filler and an Ag interlayer. Mater Charact 129:98–103. https://doi.org/10.1016/j.matchar.2017.04.032

    Article  CAS  Google Scholar 

  112. Shiue R-K, Chen C-P, Wu S-K (2015) Infrared brazing of Ti50Ni50 shape memory alloy and 316L stainless steel with two sliver-based fillers. Metall and Mat Trans A 46:2364–2371. https://doi.org/10.1007/s11661-015-2830-7

    Article  CAS  Google Scholar 

  113. Luo Z, Wang G, Zhao Y, Tan C, He R (2022) Brazing SiC ceramics and Zr with CoCrFeNiCuSn high entropy alloy. Ceram Int 48(16):23325–23333. https://doi.org/10.1016/j.ceramint.2022.04.320

    Article  CAS  Google Scholar 

  114. Liu Y, Wang G, Cao W, Xu H, Huang Z, Zhu D, Tan C (2017) Brazing ZrB2-SiC ceramics to Ti6Al4V alloy with TiCu-based amorphous filler. J Manuf Process 30:516–522. https://doi.org/10.1016/j.jmapro.2017.10.021

    Article  Google Scholar 

  115. Ong FS, Rheingans B, Goto K, Tobe H, Ohmura T, Janczak-Rusch J, Sato E (2021) Residual stress induced failure of Ti-6Al-4V/Si3N4 joints brazed with Ag–Cu–Ti filler: The effects of brazing zone’s elasto-plasticity and ceramics’ intrinsic properties. J Euro Ceram Soc 41(13):6319–6329. https://doi.org/10.1016/j.jeurceramsoc.2021.06.038

    Article  CAS  Google Scholar 

  116. Cai XQ, Wang DP, Wang Y, Yang ZW (2020) Microstructural evolution and mechanical properties of TiB2-TiC-SiC ceramics joint brazed using Ti–Ni composite foils. J Eur Ceram Soc 40:3380–3390. https://doi.org/10.1016/j.jeurceramsoc.2020.03.053

    Article  CAS  Google Scholar 

  117. Liu D, Zhang L, Feng J, Liu H, He P (2009) Microstructure and fracture behavior of SiO2 glass ceramic and TC4 alloy joint brazed with TiZrNiCu alloy. J Cent South Univ Technol 16:713–718. https://doi.org/10.1007/s11771-009-0118-z

    Article  CAS  Google Scholar 

  118. Xiong JT, Li JL, Zhang FS, Lin X, Huang WD (2008) Direct joining of 2D carbon/carbon composites to Ti–6Al–4V alloy with a rectangular wave interface. Mater Sci Eng A 488:205–213. https://doi.org/10.1016/j.msea.2007.11.013

    Article  CAS  Google Scholar 

  119. Guo W, Wang L, Zhu Y, Chu PK (2015) Microstructure and mechanical properties of C/C composite/TC4 joint with inactive AgCu filler metal. Ceram Int 41:7021–7027. https://doi.org/10.1016/j.ceramint.2015.02.006

    Article  CAS  Google Scholar 

  120. Xiong H-P, Chen B, Pan Y, Zhao H-S, Ye L (2014) Joining of Cf/SiC composite with a Cu–Au–Pd–V brazing filler and interfacial reactions. J Eur Ceram Soc 34:1481–1486. https://doi.org/10.1016/j.jeurceramsoc.2013.12.022

    Article  CAS  Google Scholar 

  121. Liu D, Song Y, Zhou Y, Song X, Fu W, Feng J (2018) Brazing of C/C composite and Ti-6Al-4V with graphene strengthened AgCuTi filler: Effects of graphene on wettability, microstructure and mechanical properties. Chin J Aeronaut 31:1602–1608. https://doi.org/10.1016/j.cja.2017.08.017

    Article  Google Scholar 

  122. Shen Y, Li Z, Hao C, Zhang J (2012) A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer. J Eur Ceram Soc 32:1769–1774. https://doi.org/10.1016/j.jeurceramsoc.2011.12.016

    Article  CAS  Google Scholar 

  123. Botstein O, Rabinkin A (1994) Brazing of titanium-based alloys with amorphous 25 wt% Ti-25 wt% Zr-50 wt% Cu filler metal. Mater Sci Eng A 188:305–315. https://doi.org/10.1016/0921-5093(94)90386-7

    Article  Google Scholar 

  124. Song Y, Liu D, Li X, Song X, Long W, Cao J (2020) Microstructure and mechanical properties of Cf/SiC composite/GH99 joints brazed with BNi2-Ti composite filler. J Manuf Process 58:905–913. https://doi.org/10.1016/j.jmapro.2020.09.009

    Article  Google Scholar 

  125. Song X, Li H, Zeng X, Zhang L (2016) Brazing of C/C composites to Ti6Al4V using graphene nanoplatelets reinforced TiCuZrNi brazing alloy. Mater Lett 183:232–235. https://doi.org/10.1016/j.matlet.2016.07.111

    Article  CAS  Google Scholar 

  126. Cui B, Huang J, Cai C, Chen S, Zhao X (2014) Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti–Zr–Cu–Ni)+W composite filler materials. Compos Sci Technol 97:19–26. https://doi.org/10.1016/j.compscitech.2014.03.021

    Article  CAS  Google Scholar 

  127. Chen ZB, Bian H, Hu SP, Song XG, Niu CN, Duan XK, Cao J, Feng JC (2018) Surface modification on wetting and vacuum brazing behavior of graphite using AgCu filler metal. Surf Coat Technol 348:104–110. https://doi.org/10.1016/j.surfcoat.2018.05.039

    Article  CAS  Google Scholar 

  128. Deng J, Li H, Deng M, Xia X, Liu J, Fan S, Zhang L, Cheng L (2021) Brazing of graphite and stainless steel with Ag–Cu–Ti filler: effects of brazing process parameters on microstructure and mechanical properties. Mater Today Commun 28:102544. https://doi.org/10.1016/j.mtcomm.2021.102544

    Article  CAS  Google Scholar 

  129. Vidyuk TM, Dudina DV, Esikov MA, Mali VI, Anisimov AG, Bokhonov BB, Batraev IS (2020) Pulsed current-assisted joining of copper to graphite using Ti–Cu brazing layers. Mater Today Proc 1(25):377–80. https://doi.org/10.1016/j.matpr.2019.12.095

    Article  CAS  Google Scholar 

  130. Ma W, Xiao H, Wang S, Liu S (2022) Interface characteristics and mechanical properties of vacuum-brazed diamond with Ni–Cr+ W composite filler alloy. Vacuum 198:110897. https://doi.org/10.1016/j.vacuum.2022.110897

    Article  CAS  Google Scholar 

  131. Shi JM, Zhang LX, Tian XY, Li HW, Feng JC (2018) Vacuum brazing of the Cf/C composite and Ni base superalloy using MBF 20 filler. Vacuum 156:427–433. https://doi.org/10.1016/j.vacuum.2018.08.004

    Article  CAS  Google Scholar 

  132. Sun Y, Zhang J, Liu C (2020) Microstructure and formation mechanism of Cf/SiC and Nb joint brazed with laminated amorphous Ti–Zr–Cu–Ni/crystalline Ti composite filler. Vacuum 179:109480. https://doi.org/10.1016/j.vacuum.2020.109480

    Article  CAS  Google Scholar 

  133. Song XG, Chai JH, Hu SP, Cao J, Feng JC, Tang DY (2017) A novel metallization process for soldering graphite to copper at low temperature. J Alloy Compd 696:1199–1204. https://doi.org/10.1016/j.jallcom.2016.12.104

    Article  CAS  Google Scholar 

  134. Zhou Z-J, Zhong Z-H, Ge C-C (2007) Silicon doped carbon/Cu joints based on amorphous alloy brazing for first wall application. Fusion Eng Des 82:35–40. https://doi.org/10.1016/j.fusengdes.2006.05.004

    Article  CAS  Google Scholar 

  135. Zhang J, Wang T, Liu C, He Y (2014) Effect of brazing temperature on microstructure and mechanical properties of graphite/copper joints. Mater Sci Eng, A 594:26–31. https://doi.org/10.1016/j.msea.2013.11.059

    Article  CAS  Google Scholar 

  136. Zhong Z, Zhou Z, Ge C (2009) Brazing of doped graphite to Cu using stress relief interlayers. J Mater Process Technol 209:2662–2670. https://doi.org/10.1016/j.jmatprotec.2008.06.021

    Article  CAS  Google Scholar 

  137. Casalegno V, Koppitz Th, Pintsuk G, Salvo M, Rizzo S, Perero S, Ferraris M (2014) Proposal for a modified non-active brazing alloy for joining CFC composites to copper. Compos B Eng 56:882–888. https://doi.org/10.1016/j.compositesb.2013.08.079

    Article  CAS  Google Scholar 

  138. Habibi F, Samadi A, Nouri M (2023) Microstructural evolution during low-temperature brazing of WC-Co cemented carbide to AISI 4140 steel using a silver-based filler alloy. Int J Refract Metals Hard Mater 116:106354. https://doi.org/10.1016/j.ijrmhm.2023.106354

    Article  CAS  Google Scholar 

  139. Xue H, Li T, Guo W, Chen C, Zhao J, Ding Z (2022) Effect of graphite content on microstructure and properties of Al2O3 ceramic and 304 stainless steel brazed joints. Mater Lett 307:131050. https://doi.org/10.1016/j.matlet.2021.131050

    Article  CAS  Google Scholar 

  140. Wang J, Li K, Li W, Li H, Li Z, Guo L (2013) The preparation and mechanical properties of carbon/carbon composite joints using Ti–Si–SiC–C filler as interlayer. Mater Sci Eng, A 574:37–45. https://doi.org/10.1016/j.msea.2013.03.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Class III Peak Discipline of Shanghai—Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing).

Author information

Authors and Affiliations

Authors

Contributions

ZL helped in writing—original draft. HS was involved in review and editing. PZ contributed to investigation. ZY helped in funding acquisition. QL contributed to resources. HY was involved in methodology. TS helped in validation.

Corresponding author

Correspondence to Haichuan Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shi, H., Zhang, P. et al. Progress, applications, and perspectives of titanium-based braze filler metal: a review. J Mater Sci 58, 14945–14996 (2023). https://doi.org/10.1007/s10853-023-08935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08935-0

Navigation