Skip to main content
Log in

A superior microwave absorption material of porous carbon nanosheet/Fe3O4 composites from petroleum asphalt as carbon source

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Designing high-performance microwave absorption (MA) materials becomes a considerable urgent demand with the rapid development of informatization in the modern world. Petroleum asphalt (PA)/Fe3O4 as absorbents with interconnected porous carbon nanosheets has been successfully fabricated by pyrolyzation and solvothermal approaches. The addition of NaCl as templates directly results in the formation of porous nanosheets structures, which improves the dielectric loss and facilitates the polarization effect of PA/Fe3O4 composites. Dramatically, a minimum reflection loss (RLmin) of PA/Fe3O4/paraffin (filler content is only 20 wt.%) can reach to − 68.54 dB (99.999986% wave absorption) and the effective absorption bandwidth covers up to 5.12 GHz with a thickness of 1.8 mm when the mass ratio of PA to Fe3O4 is 1:1. This study suggests that our work may open a new direction for designing candidate MA materials and can be able to achieve the use of PA-based materials with the advantages of low cost, high yield and environment-friendly according to the huge commercial value of PA itself.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

All the data and code collected from the cited references can be easily accessed according to a DOI to an electronic repository. The data from this study are available from the corresponding author upon reasonable request.

References

  1. Yan K, Wu C, Xie L, Ji G, Zeng L, Jiang Y, Jiang Z, Chang G, Xue B, Zheng Q (2023) High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method. Nano Res. https://doi.org/10.1007/s12274-023-5713-z

    Article  Google Scholar 

  2. Lu X, Li X, Wang Y, Hu W, Zhu W, Zhu D, Qing Y (2022) Construction of ZnIn2S4 nanosheets/3D carbon heterostructure with Schottky contact for enhancing electromagnetic wave absorption performance. Chem Eng J 431(2):134078. https://doi.org/10.1016/j.cej.2021.134078

    Article  CAS  Google Scholar 

  3. Devi N, Ray S (2022) Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: a review. Polym Eng Sci 62(3):591–621. https://doi.org/10.1002/pen.25876

    Article  CAS  Google Scholar 

  4. Ejaz A, Shahid H, Amin Y (2022) A robust, compact and efficient AMC-enabled dual-band antenna for wearable healthcare. J Circuit Syst Comp 32(2):2350023. https://doi.org/10.1016/j.compscitech.2019.02.031

    Article  CAS  Google Scholar 

  5. Liu W, Duan P, Ding Y, Zhang B, Su H, Zhang X, Wang J, Zou Z (2022) One-dimensional MOF-derived magnetic composites for efficient microwave absorption at ultralow thickness through controllable hydrogen reduction. Dalton Trans 51(17):6597–6606. https://doi.org/10.1039/D2DT00113F

    Article  CAS  Google Scholar 

  6. Peymanfar R, Mirkhan A (2022) Biomass-derived materials: promising, affordable, capable, simple, and lightweight microwave absorbing structures. Chem Eng J 446(1):136903. https://doi.org/10.1016/j.cej.2022.136903

    Article  CAS  Google Scholar 

  7. Yao L, Yang W, Zhou S, Mei H, Cheng L, Zhang L (2022) Design paradigm for strong-lightweight perfect microwave absorbers: the case of 3D printed gyroid shellular SiOC-based metamaterials. Carbon 196:961–971. https://doi.org/10.1016/j.carbon.2022.06.004

    Article  CAS  Google Scholar 

  8. Wang S, Gong H, Ashfaq M, Qi D, Xu P, Yue X (2022) Tailoring microwave absorption bandwidth of SiCN based composite ceramic fbers by tuning the embedding ratio of Ni3Si. Ceram Int 48(18):26116–26128. https://doi.org/10.1016/j.ceramint.2022.05.294

    Article  CAS  Google Scholar 

  9. Qiu Z, Shi Z, Li R, Yan H, Chen Q, Ruan L (2022) Rapid one-pot synthesis of SiO2@SiO2/Carbon@Carbon core-shell composites with efficient microwave absorption in a short time. Ceram Int 48(14):19709–19719. https://doi.org/10.1016/j.ceramint.2022.03.186

    Article  CAS  Google Scholar 

  10. Fan B, Xing L, He Q, Zhou F, Yang X, Wu T, Tong G, Wang D, Wu W (2022) Selective synthesis and defects steering superior microwave absorption capabilities of hollow graphitic carbon nitride micro-polyhedrons. Chem Eng J 435(3):135086. https://doi.org/10.1016/j.cej.2022.135086

    Article  CAS  Google Scholar 

  11. Gao S, Yang S, Wang H, Wang G, Yin P (2020) Excellent electromagnetic wave absorbing properties of two dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162:438–444. https://doi.org/10.1016/j.carbon.2020.02.031

    Article  CAS  Google Scholar 

  12. Li J, Xu Z, Li T, Zhi D, Chen Y, Lu Q, Wang J, Liu Q, Meng F (2022) Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. Compos. Part. B-Eng. 231:109565. https://doi.org/10.1016/j.compositesb.2021.109565

    Article  CAS  Google Scholar 

  13. Tian K, Wu Y, Shu R, Liu Y, Huang Y, Chen Z, Cheng G (2021) Facile synthesis of rod-like nickel cobaltite decorated reduced graphene oxide composites with excellent microwave absorption performance. Mater Lett 295:129825. https://doi.org/10.1016/j.matlet.2021.129825

    Article  CAS  Google Scholar 

  14. Wang Y, Wen Z, Long L, Li Y, Zhou W (2021) Dielectric response and microwave absorption properties of SiC whiske-coated carbon fiber. J Mater Sci Mater Electron 32(1):442–452. https://doi.org/10.1007/s10854-020-04792-8

    Article  CAS  Google Scholar 

  15. Zhang W, Zhang X, Zhu Q, Zheng Y, Liotta L, Wu H (2021) High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J Colloid Interface Sci 586:457–468. https://doi.org/10.1016/j.jcis.2020.10.109

    Article  CAS  Google Scholar 

  16. Yao Z, Xu S, Zhang X, Yuan J, Rong C, Xiong Z, Zhu X, Yu Y, Yu H, Kang S, Kuang F (2023) CuCo nanocube/N-doped carbon nanotube composites for microwave absorption. ACS Appl Nano Mater 6(2):1325–1338. https://doi.org/10.1021/acsanm.2c04972

    Article  CAS  Google Scholar 

  17. Vovchenko L, Matzui L, Yakovenko O, Oliynyk V, Len T, Naumenko A, Kulikov L (2022) Microwave absorption in epoxy composites filled with MoS2 and carbon nanotubes. J Appl Phys 131(3):035103. https://doi.org/10.1063/5.0070633

    Article  CAS  Google Scholar 

  18. Cui J, Wang X, Huang L, Zhang C, Yuan Y, Li Y (2022) Environmentally friendly bark-derived Co-Doped porous carbon composites for microwave absorption. Carbon 187:115–125. https://doi.org/10.1016/j.carbon.2021.10.077

    Article  CAS  Google Scholar 

  19. Wu Z, Meng Z, Yao C, Deng Y, Zhang G, Wang Y (2022) Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption. Mater Chem Phys 275:125246. https://doi.org/10.1016/j.matchemphys.2021.125246

    Article  CAS  Google Scholar 

  20. Zhao H, Seow J, Cheng Y, Xu Z, Ji G (2020) Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceram Int 46(10):15447–15455. https://doi.org/10.1016/j.ceramint.2020.03.089

    Article  CAS  Google Scholar 

  21. Song X, Jiang R, Lei Z (2022) In-situ growth of CNTs-porous carbon from asphalt with superior double-layer capacitive performance. Appl Surf Sci 583:152549. https://doi.org/10.1016/j.apsusc.2022.152549

    Article  CAS  Google Scholar 

  22. Yang W, Li R, Hou L, Deng B, Li Y (2021) Synthesis of a petroleum asphalt-based nitrogen/sulfur doped porous carbon material and its use as the counter electrode of dye-sensitized solar cells. Carbon 171:981. https://doi.org/10.1016/j.carbon.2020.05.094

    Article  Google Scholar 

  23. Yang W, Deng B, Hou L, Wang T, Tian J, Wang S, Li R, Yang F, Li Y (2020) Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt. Chem Eng J 380:122552. https://doi.org/10.1016/j.cej.2019.122552

    Article  CAS  Google Scholar 

  24. Wang K, Ye Z, Li X, Yang J (2022) Nanoporous resorcinol-formaldehyde based carbon aerogel for lightweight and tunable microwave absorption. Mater Chem Phys 278:125718. https://doi.org/10.1016/j.jechem.2018.05.014

    Article  CAS  Google Scholar 

  25. Zeng X, Sang Y, Xia G, Jiang G, Xie N, Zheng N, Cheng Y, Yu R (2022) 3-D hierarchical urchin-like Fe3O4/CNTs architectures enable efficient electromagnetic microwave absorption. Mater Sci Eng B 281:115721. https://doi.org/10.1016/j.mseb.2022.115721

    Article  CAS  Google Scholar 

  26. Araichmani P, Prabu K, Kumar G, Karunakaran G, Surendhiran S, Shkir M, Ali H (2022) Synthesis of Fe3O4-decorated SiO2 nanostructure using rice husk as a source by microwave combustion for the development of a magnetically recoverable adsorbent. Ceram Int 48(7):10339–10345. https://doi.org/10.1016/j.ceramint.2022.02.001

    Article  CAS  Google Scholar 

  27. Chen G, Xu D, Chen P, Guo X, Yu Q, Qiu H (2021) Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers. J Magn Magn Mater 532:167990. https://doi.org/10.1016/j.jmmm.2021.167990

    Article  CAS  Google Scholar 

  28. Ma W, Yang R, Wang T (2020) ZnO nanorod-based microflowers decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. ACS Appl Nano Mater 3:8319–8327. https://doi.org/10.1021/acsanm.0c01728

    Article  CAS  Google Scholar 

  29. Li G, Yin Z, Guo H, Wang Z, Yan G, Yang Z, Liu Y, Ji X, Wang J (2019) Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor. Adv Energy Mater 9(2):1802878. https://doi.org/10.1002/aenm.201802878

    Article  CAS  Google Scholar 

  30. Liu X, Ou Z, Geng D, Han Z, Jiang J, Liu W, Zhang Z (2010) Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon 48(3):891–897. https://doi.org/10.1016/j.carbon.2009.11.011

    Article  CAS  Google Scholar 

  31. Mishra M, Singh A, Singh B, Singh V, Dhawan S (2014) Conducting ferrofluid: a high-performance microwave shielding material. J Mater Chem A 2(32):13159–13168. https://doi.org/10.1039/C4TA01681E

    Article  CAS  Google Scholar 

  32. Liu Q, Liu X, Feng H, Shuai H, Yu R (2016) Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem Eng J 314:320–327. https://doi.org/10.1016/j.cej.2016.11.089

    Article  CAS  Google Scholar 

  33. Duan Y, Xiao Z, Yan X, Gao Z, Tang Y, Hou L, Li Q, Ning G, Li Y (2018) Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon Nanowires. ACS Appl Mater Interfaces 10(46):40078–40087. https://doi.org/10.1021/acsami.8b11395

    Article  CAS  Google Scholar 

  34. Duan Y, Li Y, Wang D, Wang R, Wang Y, Hou L, Yan X, Li Q, Yang W, Li Y (2019) Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite. Carbon 153:682–690. https://doi.org/10.1016/j.carbon.2019.07.078

    Article  CAS  Google Scholar 

  35. Zhang X, Guan P, Dong X (2010) Transform between the permeability and permittivity in the close-packed Ni nanoparticles. Appl Phys Lett 97(3):033107. https://doi.org/10.1063/1.3464975

    Article  CAS  Google Scholar 

  36. Zhou J, He J, Wang T, Li G, Guo Y, Zhao J, Ma Y (2011) Design of mesostructured γ-Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J Alloys Compd 509(32):8211–8214. https://doi.org/10.1016/j.jallcom.2011.05.042

    Article  CAS  Google Scholar 

  37. Lv H, Liang X, Ji G, Zhang H, Du Y (2015) Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Interfaces 7(18):9776–9783. https://doi.org/10.1021/acsami.5b01654

    Article  CAS  Google Scholar 

  38. Wen B, Cao M, Hou Z, Song W, Zhang L, Lu M, Jin H, Fang X, Wang W, Yuan J (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124–139. https://doi.org/10.1016/j.carbon.2013.07.110

    Article  CAS  Google Scholar 

  39. Yang H, Yuan J, Li Y, Hou Z, Jin H, Fang X, Cao M (2013) Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Commun 163:1–6. https://doi.org/10.1016/j.ssc.2013.03.004

    Article  CAS  Google Scholar 

  40. Mordina B, Kuma R, Tiwari R, Setua D (2017) Fe3O4 nanoparticles embedded hollow mesoporous carbon nanofibers and polydimethylsiloxane-based nanocomposites as efficient microwave absorber. J Mater Chem C 121(14):7810–7820. https://doi.org/10.1021/acs.jpcc.6b12941

    Article  CAS  Google Scholar 

  41. Xia T, Zhang C, Oyler N, Chen X (2013) Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 25(47):6905–6910. https://doi.org/10.1002/adma.201303088

    Article  CAS  Google Scholar 

  42. Li Y, Cao M (2016) Enhanced electromagnetic properties and microwave attenuation of BiFeO3-BaFe7(MnTi)2.5O19 driven by multi-relaxation and strong ferromagnetic resonance. Mater Des 110:99–104. https://doi.org/10.1016/j.matdes.2016.07.119

    Article  CAS  Google Scholar 

  43. Zhou W, Xiao P, Li Y (2012) Preparation and study on microwave absorbing materials of boron nitride coated pyrolytic carbon particles. Appl Surf Sci 258(22):8455–8459. https://doi.org/10.1016/j.apsusc.2012.03.107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, for measuring the performance of the materials such as TEM, SEM, XRD and BET in this study. The research was sponsored by 2022 Young Doctor Fund Project of Higher Education institutions in Gansu Province (2022QB-205), 2021 Lanzhou Science and Technology Development guiding Plan Project (2022-ZD-150) and 2022 Major Scientific Research Project of Lanzhou Resources & Environment Voc-Tech University (X2022ZD-01).

Author information

Authors and Affiliations

Authors

Contributions

WM was involved in conception, experimental design, data analyses and writing the paper. WLL contributed to data collection and project administration. SR was involved in investigation and methodology. GFY contributed to experiments and funding acquisition. TMW was involved in writing—review and editing.

Corresponding author

Correspondence to Wei Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

The authors declare that they have no conflict of interest and no living organisms were harmed.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Li, W., Ran, S. et al. A superior microwave absorption material of porous carbon nanosheet/Fe3O4 composites from petroleum asphalt as carbon source. J Mater Sci 58, 13279–13294 (2023). https://doi.org/10.1007/s10853-023-08873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08873-x

Navigation